| update.i_pca {idm} | R Documentation | 
Updates a Principal Component Analysis solution
Description
This function updates the Principal Component Analysis (PCA) solution on the covariance matrix using the incremental method of Hall, Marshall & Martin (2002)
Usage
## S3 method for class 'i_pca'
update(object, incdata, current_rank, ...)
Arguments
object | 
 object of class 'i_pca'  | 
incdata | 
 matrix of incoming data  | 
current_rank | 
 Rank of approximation or number of components to compute; if empty, the full rank is used  | 
... | 
 Further arguments passed to   | 
Value
rowpcoord | 
 Row scores on the principal components  | 
colpcoord | 
 Variable loadings  | 
eg | 
 A list describing the eigenspace of a data matrix, with components   | 
inertia.e | 
 Percentages of explained variance  | 
sv | 
 Singular values  | 
levelnames | 
 Variable names  | 
rowcor | 
 Row squared correlations  | 
rowctr | 
 Row contributions  | 
colcor | 
 Column squared correlations  | 
colctr | 
 Column contributions  | 
References
Hall, P., Marshall, D., & Martin, R. (2002). Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing, 20(13), 1009-1016.
 
Iodice D' Enza, A., & Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009–1022. 
 
Iodice D'Enza, A., Markos, A., & Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1–24. DOI: 10.18637/jss.v086.c04.
See Also
update.i_mca, i_pca, i_mca, add_es
Examples
data(segmentationData, package = "caret")
HCS = data.frame(scale(segmentationData[,-c(1:3)]))
names(HCS) = abbreviate(names(HCS), minlength = 5)
res_PCA = i_pca(HCS[1:200, ])
aa = seq(from = 201, to = nrow(HCS), by = 200)
aa[length(aa)] = nrow(HCS)+1
for (k in c(1:(length(aa)-1))){
     res_PCA = update(res_PCA, HCS[c((aa[k]):(aa[k+1]-1)),])
    }
#Static plot
plot(res_PCA, animation = FALSE)