update.i_pca {idm} | R Documentation |
Updates a Principal Component Analysis solution
Description
This function updates the Principal Component Analysis (PCA) solution on the covariance matrix using the incremental method of Hall, Marshall & Martin (2002)
Usage
## S3 method for class 'i_pca'
update(object, incdata, current_rank, ...)
Arguments
object |
object of class 'i_pca' |
incdata |
matrix of incoming data |
current_rank |
Rank of approximation or number of components to compute; if empty, the full rank is used |
... |
Further arguments passed to |
Value
rowpcoord |
Row scores on the principal components |
colpcoord |
Variable loadings |
eg |
A list describing the eigenspace of a data matrix, with components |
inertia.e |
Percentages of explained variance |
sv |
Singular values |
levelnames |
Variable names |
rowcor |
Row squared correlations |
rowctr |
Row contributions |
colcor |
Column squared correlations |
colctr |
Column contributions |
References
Hall, P., Marshall, D., & Martin, R. (2002). Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing, 20(13), 1009-1016.
Iodice D' Enza, A., & Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009–1022.
Iodice D'Enza, A., Markos, A., & Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1–24. DOI: 10.18637/jss.v086.c04.
See Also
update.i_mca
, i_pca
, i_mca
, add_es
Examples
data(segmentationData, package = "caret")
HCS = data.frame(scale(segmentationData[,-c(1:3)]))
names(HCS) = abbreviate(names(HCS), minlength = 5)
res_PCA = i_pca(HCS[1:200, ])
aa = seq(from = 201, to = nrow(HCS), by = 200)
aa[length(aa)] = nrow(HCS)+1
for (k in c(1:(length(aa)-1))){
res_PCA = update(res_PCA, HCS[c((aa[k]):(aa[k+1]-1)),])
}
#Static plot
plot(res_PCA, animation = FALSE)