update.i_mca {idm} | R Documentation |
Updates a Multiple Correspondence Analysis solution
Description
This function updates the Multiple Correspondence Analysis (MCA) solution on the indicator matrix using the incremental method of Ross, Lim, Lin, & Yang (2008)
Usage
## S3 method for class 'i_mca'
update(object, incdata, current_rank, ff = 0, ...)
Arguments
object |
object of class 'i_mca' |
incdata |
Matrix of incoming data |
current_rank |
Rank of approximation or number of components to compute; if empty, the full rank is used |
ff |
Number between 0 and 1 indicating the "forgetting factor" used to down-weight the contribution of earlier data blocks to the current solution. When |
... |
Further arguments passed to |
Value
rowpcoord |
Row principal coordinates |
colpcoord |
Column principal coordinates |
rowcoord |
Row standard coordinates |
colcoord |
Column standard coordinates |
sv |
Singular values |
inertia.e |
Percentages of explained inertia |
levelnames |
Attribute names |
rowctr |
Row contributions |
colctr |
Column contributions |
rowcor |
Row squared correlations |
colcor |
Column squared correlations |
rowmass |
Row masses |
colmass |
Column masses |
indmat |
Indicator matrix |
m |
Number of cases processed up to this point |
ff |
A copy of |
References
Iodice D'Enza, A., Markos, A., & Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1–24. DOI: 10.18637/jss.v086.c04.
Ross, D. A., Lim, J., Lin, R. S., & Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1-3), 125–141.
See Also
Examples
data(women, package = "idm")
dat = women[,c(1:4)]
res_MCA = i_mca(dat[1:300,])
aa = seq(from = 301, to = nrow(women), by = 200)
aa[length(aa)] = nrow(dat)+1
for (k in c(1:(length(aa)-1)))
{
res_MCA = update(res_MCA,dat[c((aa[k]):(aa[k+1]-1)),])
}
plot(res_MCA, what = c(FALSE, TRUE), animation = FALSE)