add_es {idm} | R Documentation |
Adds two eigenspaces using block-wise incremental SVD (with or without mean update)
Description
This function implements two procedures for updating existing decomposition. When method="esm"
it adds two eigenspaces using the incremental method of Hall, Marshall & Martin (2002). The results correspond to the eigenspace of the mean-centered and concatenated data.
When method = "isvd"
it adds the eigenspace of an incoming data block to an existing eigenspace using the block-wise incremental singular value decomposition (SVD) method described by Zha & Simon (1999), Levy and Lindenbaum (2000), Brand (2002) and Baker (2012). New data blocks are added row-wise. The procedure can optionally keep track of the data mean using the orgn argument, as described in Ross et al. (2008) and Iodice D'Enza & Markos (2015).
Usage
add_es(eg, eg2, current_rank, ff = 0, method = c("esm", "isvd"))
Arguments
eg |
A list describing the eigenspace of a data matrix, with components |
method |
refers to the procedure being implemented: |
eg2 |
(*)A list describing the eigenspace of a data matrix, with components |
current_rank |
Rank of approximation; if empty, the full rank is used |
ff |
(**)Number between 0 and 1 indicating the forgetting factor used to down-weight the contribution of earlier data blocks to the current solution. When ff = 0 (default) no forgetting occurs |
(*) for method = "esm"
only; (**) for method = "isvd"
only.
Value
A list describing the SVD of a data matrix, with components
u |
Left singular vectors |
d |
Singular values |
v |
Right singular vectors |
m |
Number of cases |
orgn |
Data mean; returned only if |
References
Zha, H., & Simon, H. D. (1999). On updating problems in latent semantic indexing. SIAM Journal on Scientific Computing, 21(2), 782-791.
Levy, A., & Lindenbaum, M. (2000). Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Transactions on Image Processing, 9(8), 1371-1374.
Brand, M. (2002). Incremental singular value decomposition of uncertain data with missing values. In Computer Vision-ECCV 2002 (pp. 707-720). Springer Berlin Heidelberg.
Ross, D. A., Lim, J., Lin, R. S., & Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1-3), 125-141.
Baker, C. G., Gallivan, K. A., & Van Dooren, P. (2012). Low-rank incremental methods for computing dominant singular subspaces. Linear Algebra and its Applications, 436(8), 2866-2888.
Iodice D' Enza, A., & Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022.
Iodice D'Enza, A., Markos, A., & Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1–24. DOI: 10.18637/jss.v086.c04.
See Also
do_es
, i_pca
, i_mca
, update.i_pca
, update.i_mca
Examples
## Example 1 - eigenspace merge (Hall et al., 2002)
#Iris species
data("iris", package = "datasets")
X = iris[,-5]
#obtain two eigenspaces
eg = do_es(X[1:50, ])
eg2 = do_es(X[c(51:150), ])
#add the two eigenspaces keeping track of the data mean
eg12 = add_es(method = "esm", eg, eg2)
#equivalent to the SVD of the mean-centered data (svd(scale(X, center = TRUE,scale = FALSE)))
## Example 2 - block-wise incremental SVD with mean update, full rank (Ross et al., 2008)
data("iris", package = "datasets")
# obtain the eigenspace of the first 50 Iris species
X = iris[,-5]
eg = do_es(X[1:50, ])
#update the eigenspace of the remaining species to
eg_new = add_es(method = "isvd", eg, data.matrix(X[c(51:150), ]))
#equivalent to the SVD of the mean-centered data (svd(scale(X, center = TRUE, scale = FALSE)))
##Example 3 - incremental SVD with mean update, 2d approximation (Ross et al., 2008)
data("iris", package = "datasets")
# obtain the eigenspace of the first 50 Iris species
X = iris[,-5]
eg = do_es(X[1:50, ])
#update the eigenspace of the remaining species to
eg = add_es(method = "isvd", eg, data.matrix(X[c(51:150), ]),current_rank = 2)
#similar to PCA on the covariance matrix of X (SVD of the mean-centered data)