mada {ider} | R Documentation |
Manifold-Adaptive Local Dimension Estimation.
Description
mada
estimates local information dimension of given dataset based on
the first order expansion of probability mass function.
Usage
mada(x, k = NULL, comb = "average", DM = FALSE, local = FALSE, maxDim = 5)
Arguments
x |
data matrix or distance matrix given by as.matrix(dist(x)). |
k |
k-NN parameter. |
comb |
'average', 'median' or 'vote' for combining local estimates when global estimate is required. |
DM |
whether |
local |
logical. If |
maxDim |
maximum of the candidate dimensions. |
Details
A variant of fractal dimension called the local information dimension is considered.
The local information dimension is estimated by using the probability mass function.
The function mada
considers first order expansion of the probability mass around
the inspection point, and it estimates the local information dimension by using two different
radii from the inspection point.
Value
Estimated local or global intrinsic dimension.
Author(s)
Hideitsu Hino hideitsu.hino@gmail.com
References
A. M. Farahmand, C. Szepesvari and J-Y. Audibert. Manifold-adaptive dimension estimation. International Conference on Machine Learning, 2007.
Examples
## local intrinsic dimension estimate
tmp <- gendata(DataName='ldbl',n=300)
x <- tmp$x
estmada <- mada(x=x,local=TRUE)
head(estmada) ## estimated local intrinsic dimensions by mada
head(tmp$tDim) ## true local intrinsic dimensions