summary.IDEMINFER {idem} | R Documentation |
Summary of the inference results
Description
Summarize survivors only or Survivor Averaged Causal Effect (SACE) based on the imputation and bootstrap analysis
Usage
## S3 method for class 'IDEMINFER'
summary(object, opt = c("survivor", "SACE"), sace.deltas = NULL, ...)
Arguments
object |
A class |
opt |
Types of the summary
|
sace.deltas |
Vector of sensitivity parameters for SACE estimation. If
|
... |
Optional arguments for summary |
Details
For SACE, the default sensitivity parameters will be determined by the standard deviation of the treatment effect size on the functional outcomes.
Value
A class summary.IDEMINFER
list containing
- deltas
imputation sensitivity parameters
- n.boot
number of bootstrap samples in bootstrap analysis
- sace.deltas
SACE sensitivity parameters when
opt = SACE
- rst
A data frame with columns
-
Delta0
: Imputation sensitivity parameter for control arm, -
Delta1
: Imputation sensitivity parameter for intervention arm -
SACE_Delta
: SACE sensitivity parameter whenopt = SACE
-
Effect
: SACE estimate -
LB
: Lower bound of the 95 -
UB
: Upper bound of the 95 -
PValue
: p-value when whenn.boot > 0
in theIDEMINFER
object
-
References
Chiba Y, VanderWeele TJ (2011). A simple method for principal strata effects when the outcome has been truncated due to death. American Journal of Epidemiology 173(7):745-751.
Examples
## Not run:
rst.abc <- imData(abc, trt="TRT", surv="SURV", outcome=c("Y1","Y2"),
y0=NULL, endfml="Y2",
trt.label = c("UC+SBT", "SAT+SBT"),
cov=c("AGE"), duration=365, bounds=c(0,100));
rst.fit <- imFitModel(rst.abc);
rst.imp <- imImpAll(rst.fit, deltas=c(-0.25,0,0.25),
normal=TRUE, chains = 2, iter = 2000, warmup = 1000);
rst.infer <- imInfer(rst.imp, n.boot = 100, effect.quantiles = c(0.25,0.5,0.75));
rst.sace <- summary(rst.infer, opt = "SACE")
## End(Not run)