imInfer {idem} | R Documentation |
Treatment effect estimation and hypothesis testing
Description
Estimate treatment effect size. Estimate variation and conduct hypothesis testing by bootstrap analysis.
Usage
imInfer(
imp.rst,
n.boot = 0,
n.cores = 1,
update.progress = NULL,
effect.quantiles = c(0.25, 0.5, 0.75),
quant.ci = c(0.025, 0.975),
...,
seed = NULL
)
Arguments
imp.rst |
A class |
n.boot |
Number of bootstrap samples |
n.cores |
Number of cores for parallel computation. Fixed at 1 for Windows. |
update.progress |
Parameter reserved for run |
effect.quantiles |
Composite quantiles of interest for measuring treatment effect |
quant.ci |
Quantiles for extracting bootstrap confidence intervals |
... |
Extra options for ranking subjects using the composite endpoint that include
|
seed |
Random seed |
Details
If n.boot=0
, bootstrap analysis will not be conducted. Instead, only
the treatment effect size will be estimated using the imputed data.
Value
A class IDEMTEST
list containing
- lst.var
List of specification parameters
- deltas
Vector of sensitivity parameters
- theta
A data frame with columns
-
Delta0
: Sensitivity parameter for control arm -
Delta1
: Sensitivity parameter for intervention arm -
Theta
: Estimated\theta
-
SD
: Standard deviation (whenn.boot >0
) -
PValue
: p-value (whenn.boot >0
-
- effect.quantiles
A data frame with columns
-
Delta
:Sensitivity parameter -
TRT
:Treatment arm -
Q
: Quantiles of the composite endpoint to be estimated -
QuantY
: Estimated quantiles if the quantiles correspond to functional outcome (whenn.boot >0
) -
QuantSurv
: Estimated quantiles if the quantiles correspond to survival days (whenn.boot >0
) -
Q
: Boostrap quantiles for the QuantY (whenn.boot >0
) -
QSurv
: Boostrap quantiles for the QuantSurv (whenn.boot >0
)
-
- bootstrap
A list with length
n.boot
. Thei
th item is the classIDEMEST
list corresponding to thei
th bootstrap sample
Examples
## Not run:
rst.abc <- imData(abc, trt="TRT", surv="SURV", outcome=c("Y1","Y2"),
y0=NULL, endfml="Y2",
trt.label = c("UC+SBT", "SAT+SBT"),
cov=c("AGE"), duration=365, bounds=c(0,100));
rst.fit <- imFitModel(rst.abc);
rst.imp <- imImpAll(rst.fit, deltas=c(-0.25,0,0.25),
normal=TRUE, chains = 2, iter = 2000, warmup = 1000);
rst.est <- imInfer(rst.imp, n.boot = 0, effect.quantiles = c(0.25,0.5,0.75));
rst.test <- imInfer(rst.imp, n.boot = 100, effect.quantiles = c(0.25,0.5,0.75));
## End(Not run)