imImpAll_mice {idem} | R Documentation |
Impute missing data by mice
Description
Conduct imputation using the NARFCS model implemented in the mice
package
Usage
imImpAll_mice(
im.data,
deltas = 0,
n.imp = 5,
endponly = TRUE,
seed = NULL,
...
)
Arguments
im.data |
A class |
deltas |
Vector of imputation sensitivity parameters |
n.imp |
Number of complete datasets required |
endponly |
Logical variable that indicates whether clinical outcomes not
used in calculating the functional outcome are considered as missing and
should be imputed. The default is |
seed |
Random seed |
... |
Parameters for |
Value
A class IDEMIMP
list with components
- lst.var
List of parameters
- complete
A dataset with the original data for the subset of subjects who died at the end of the study or had no missing outcomes and the
n.imp
imputed missing outcomes for subjects who need missing value imputation.- n.imp
Number of imputed complete datasets
- deltas
Imputation sensitivity parameters
- org.data
Original dataset
Examples
## Not run:
rst.abc <- imData(abc, trt="TRT", surv="SURV", outcome=c("Y1","Y2"),
y0=NULL, endfml="Y2",
trt.label = c("UC+SBT", "SAT+SBT"),
cov=c("AGE"), duration=365, bounds=c(0,100));
rst.imp <- imImpAll_mice(rst.abc, deltas=c(-0.25,0,0.25));
## End(Not run)