get.beta {icmm} | R Documentation |
Obtain model coefficient without assuming prior on structure of predictors.
Description
Given a sufficient statistic for a regression coefficient, this funciton estimates a regression coefficient without assuming prior on structure of predictors.
Usage
get.beta(SS, w, alpha, scaledfactor)
Arguments
SS |
a scalar value of sufficient statistic for a regression coefficient. |
w |
a scalar value of mixing weight. |
alpha |
a scalar value of hyperparameter |
scaledfactor |
a scalar value of multiplicative factor. |
Details
Empirical Bayes thresholding is employed to obtain a posterior median of a regression coefficient.
Value
a scalar value of regression coefficient.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
n<-dim(X)[1]
# Obtain initial values from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
# Initiate all other parameters
w<-0.5
alpha<-0.5
sigma<-get.sigma(Y=Y, X=X, beta=beta, alpha=alpha)
# Obtain a sufficient statistic
j<-1
Yres<-Y-X%*%beta+X[,j]*beta[j,1]
sxy<-t(Yres)%*%X[,j]
ssx<-sum(X[,j]^2)
SS<-sqrt(n-1)*sxy/(sigma*ssx)
beta[j,1]<-get.beta(SS=SS, w=w, alpha=alpha, scaledfactor=sigma/sqrt(n-1))
[Package icmm version 1.2 Index]