loglogistic {icensBKL} | R Documentation |
Log-logistic distribution
Description
Density, distribution function, quantile function and random generation for the log-logistic distribution.
Usage
dllogis(x, shape, scale=1, log=FALSE)
pllogis(q, shape, scale=1, lower.tail=TRUE, log.p=FALSE)
qllogis(p, shape, scale=1, lower.tail=TRUE, log.p=FALSE)
rllogis(n, shape, scale=1)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
shape |
the shape parameter |
scale |
the scale parameter |
log , log.p |
logical; if |
lower.tail |
logical; if |
Details
Log-logistic distribution
\mbox{LL}(\alpha,\,\gamma)
has a density
f(x) =
\displaystyle\frac{\alpha\gamma(\alpha\,x)^{\gamma-1}}{\bigl\{1 +
(\alpha\,x)^{\gamma}\bigr\}^{2}},\quad x>0,
and a distribution function
F(x) =
\displaystyle 1 - \frac{1}{(1 + (\alpha\,x)^\gamma)}, x>0,
where \alpha
and \gamma
are positive
parameters (\alpha
is the inverse of the scale
parameter and
\gamma
is the shape
parameter).
The mean and the variance are given by
\begin{array}{rcll}
\mbox{E}X & \;=\; & \displaystyle \frac{1}{\alpha}\,\frac{\pi}{\gamma\sin\bigl(\frac{\pi}{\gamma}\bigr)}, &\quad \gamma > 1, \\[4ex]
\mbox{var}X & \;=\; & \displaystyle \frac{1}{\alpha^2}\,
\biggl\{\frac{2\pi}{\gamma\sin\bigl(\frac{2\pi}{\gamma}\bigr)}\,-\,
\frac{\pi^2}{\gamma^2\sin^2\bigl(\frac{\pi}{\gamma}\bigr)}\biggr\},
&\quad \gamma > 2, \\[4ex]
\end{array}
Value
dllogis
gives the density,
pllogis
gives the distribution function,
qllogis
gives the quantile function,
and rllogis
generates random deviates.
Author(s)
Arnošt Komárek arnost.komarek@mff.cuni.cz
See Also
Examples
set.seed(1977)
print(x <- rllogis(10, shape=3, scale=5))
print(d <- dllogis(x, shape=3, scale=5))
print(p <- pllogis(x, shape=3, scale=5))
qllogis(p, shape=3, scale=5)