NPbayesSurv {icensBKL} | R Documentation |
Bayesian non-parametric estimation of a survival curve with right-censored data
Description
Bayesian non-parametric estimation of a survival curve for right-censored data as proposed by Susarla and Van Ryzin (1976, 1978)
Usage
NPbayesSurv(time, censor,
choice = c("exp", "weibull", "lnorm"), c = 1, parm,
xlab = "Time", ylab = "Survival Probability", maintitle = "",
cex.lab = 1.2, cex.axis = 1.0, cex.main = 1.5, cex.text = 1.2, lwd = 2)
Arguments
time , censor |
numeric vectors with (right-censored) survival times and 0/1 censoring indicators (1 for event, 0 for censored) |
choice |
a character string indicating the initial guess
( |
c |
parameter of the Dirichlet process prior |
parm |
a numeric vector of parameters for the initial guess:
|
xlab , ylab |
labels for axes of the plot |
maintitle |
text for the main title |
cex.lab , cex.axis , cex.main , cex.text , lwd |
graphical parameters |
Value
A vector corresponding to the parm
argument
Author(s)
Emmanuel Lesaffre emmanuel.lesaffre@kuleuven.be, Arnošt Komárek arnost.komarek@mff.cuni.cz
References
Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. Journal of the American Statistical Association, 71(356), 897-902.
Susarla, V. and Van Ryzin, J. (1978). Large sample theory for a Bayesian nonparametric survival curve estimator based on censored samples. The Annals of Statistics, 6(4), 755-768.
Examples
## Nonparametric Bayesian estimation of a survival curve
## Homograft study, aortic homograft patients
data("graft", package = "icensBKL")
graft.AH <- subset(graft, Hgraft == "AH") # aortic homograft patients
time <- graft$timeFU[graft$Hgraft == "AH"]
censor <- graft$homo.failure[graft$Hgraft == "AH"]
## Initial guess: Weibull, c = 0.1 and 100
oldpar <- par(mfrow = c(1, 2))
NPbayesSurv(time, censor, "weibull", c = 100,
xlab = "Follow-up time since the operation (years)", maintitle = "c = 100")
NPbayesSurv(time, censor, "weibull", c = 100,
xlab = "Follow-up time since the operation (years)", maintitle = "c = 100")
par(oldpar)
## Initial guess: Exponential, c = 100
oldpar <- par(mfrow = c(1, 1))
NPbayesSurv(time, censor, "exp", c = 100,
xlab = "Follow-up time since the operation (years)", maintitle = "Exp: c = 100")
## Initial guess: Log-normal, c = 100
NPbayesSurv(time, censor, "lnorm", c = 100,
xlab = "Follow-up time since the operation (years)", maintitle = "Log-Normal: c = 100")
par(oldpar)