acy {ica} | R Documentation |
Amari-Cichocki-Yang Error
Description
The Amari-Cichocki-Yang (ACY) error is an asymmetric measure of dissimilarity between two nonsingular matrices X
and Y
. The ACY error: (a) is invariant to permutation and rescaling of the columns of X
and Y
, (b) ranges between 0 and n-1
, and (c) equals 0 if and only if X
and Y
are identical up to column permutations and rescalings.
Usage
acy(X,Y)
Arguments
X |
Nonsingular matrix of dimension |
Y |
Nonsingular matrix of dimension |
Details
The ACY error is defined as
\frac{1}{2n}\sum_{i=1}^{n}\left(\frac{\sum_{j=1}^{n}|a_{ij}|}{\max_{j}|a_{ij}|}-1\right) + \frac{1}{2n}\sum_{j=1}^{n}\left(\frac{\sum_{i=1}^{n}|a_{ij}|}{\max_{i}|a_{ij}|}-1\right)
where a_{ij} = (\mathbf{Y}^{-1}\mathbf{X})_{ij}
.
Value
Returns a scalar (the ACY error).
Warnings
If Y
is singular, function will produce an error.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Amari, S., Cichocki, A., & Yang, H.H. (1996). A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems, 8. Cambridge, MA: MIT Press.
Examples
########## EXAMPLE ##########
set.seed(1)
X <- matrix(runif(16),4,4)
Y <- matrix(runif(16),4,4)
Z <- X[,c(3,1,2,4)]%*%diag(1:4)
acy(X,Y)
acy(X,Z)