| ibr-package {ibr} | R Documentation |
Iterative Bias Reduction
Description
an R package for multivariate smoothing using Iterative Bias Reduction smoother.
Details
We are interested in smoothing (the values of) a vector of
nobservationsybydcovariates measured at the samenobservations (gathered in the matrixX). The iterated Bias Reduction produces a sequence of smoothers\hat y=S_k y =(I - (I-S)^k)y,where
Sis the pilot smoother which can be either a kernel or a thin plate spline smoother. In case of a kernel smoother, the kernel is built as a product of univariate kernels.The most important parameter of the iterated bias reduction is
kthe number of iterationsr. Usually this parameter is unknown and is chosen from the search gridKto minimize the criterion (GCV, AIC, AICc, BIC or gMDL).
The user must choose the pilot smoother (kernel"k", thin plate splines"tps"or Duchon splines"ds") plus the values of bandwidths (kernel) or\lambdathin plate splines). As the choice of these raw values depend on each particular dataset, one can rely on effective degrees of freedom or default values given as degree of freedom, see argumentdfof the main functionibr.
Index of functions to be used by end user:
ibr: Iterative bias reduction smoothing
plot.ibr: Plot diagnostic for an ibr object
predict.ibr: Predicted values using iterative bias reduction
smoothers
forward: Variable selection for ibr (forward method)
print.summary.ibr: Printing iterative bias reduction summaries
summary.ibr: Summarizing iterative bias reduction fits
Author(s)
Pierre-Andre Cornillon, Nicolas Hengartner, Eric Matzner-Lober
Maintainer: Pierre-Andre Cornillon <pierre-andre.cornillon@supagro.inra.fr>
Examples
## Not run:
data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,-1],ozone[,1],smoother="k",df=1.1)
summary(res.ibr)
predict(res.ibr)
plot(res.ibr)
## End(Not run)