fittedS1lr {ibr} | R Documentation |
Evaluate the fit for iterative bias reduction model
Description
The function evaluates the fit for iterative bias reduction
model for iteration k
. This function is not intended to be used directly.
Usage
fittedS1lr(n,U,tUy,eigenvaluesS1,ddlmini,k,rank)
Arguments
n |
The number of observations. |
U |
The the matrix of eigen vectors of the symmetric smoothing matrix S. |
tUy |
The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y. |
eigenvaluesS1 |
Vector of the eigenvalues of the symmetric smoothing matrix S. |
ddlmini |
The number of eigen values of S equal to 1. |
k |
A numeric vector which gives the number of iterations |
rank |
The rank of lowrank splines. |
Details
see the reference for detailed explanation of computation of iterative bias reduction smoother
Value
Returns a vector containing the fit
Author(s)
Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober
References
Cornillon, P.-A.; Hengartner, N.; Jegou, N. and Matzner-Lober, E. (2012) Iterative bias reduction: a comparative study. Statistics and Computing, 23, 777-791.
Cornillon, P.-A.; Hengartner, N. and Matzner-Lober, E. (2013) Recursive bias estimation for multivariate regression smoothers Recursive bias estimation for multivariate regression smoothers. ESAIM: Probability and Statistics, 18, 483-502.
Cornillon, P.-A.; Hengartner, N. and Matzner-Lober, E. (2017) Iterative Bias Reduction Multivariate Smoothing in R: The ibr Package. Journal of Statistical Software, 77, 1–26.
Wood, S.N. (2003) Thin plate regression splines. J. R. Statist. Soc. B, 65, 95-114.