BIC {ibr} | R Documentation |
Information Criterion for ibr
Description
Functions calculating the Bayesian Informative Criterion , the Generalized Cross Validation criterion and the Corrected Akaike information criterion.
Usage
## S3 method for class 'ibr'
BIC(object, ...)
## S3 method for class 'ibr'
GCV(object, ...)
## S3 method for class 'ibr'
AICc(object, ...)
Arguments
object |
A fitted model object of class ibr. |
... |
Only for compatibility purpose with |
Details
The ibr method for BIC
, BIC.ibr()
calculates
\log(sigma^2)+log(n)*df/n
, where df is the trace
of the smoother.
The ibr method for GCV
, GCV.ibr()
calculates
\log(sigma^2)-2*\log(1-df/n)
The ibr method for AICc
, AICc.ibr()
calculates
\log(sigma^2)+1+(2*(df+1))/(n-df-2)
.
Value
Returns a numeric value with the corresponding BIC, GCV or AICc.
Author(s)
Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober.
References
Hurvich, C. M., Simonoff J. S. and Tsai, C. L. (1998) Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion. Journal of the Royal Statistical Society, Series B, 60, 271-293 .
See Also
Examples
## Not run: data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,-1],ozone[,1])
BIC(res.ibr)
GCV(res.ibr)
AICc(res.ibr)
## End(Not run)