MICA {iTensor} | R Documentation |
Multimodal independent component analysis
Description
The input datasets are assumed to be two matrices sharing the column space. MICA decomposes the matrices simutanously and extracts the components that maximizes the mutual information between the components.
Usage
MICA(
X,
Y,
J,
eta = 1000 * 1e-04,
verbose = FALSE,
mu = 50 * 1e-04,
gamma_ts = 1
)
Arguments
X |
A matrix sharing the column space with Y (??? x N) |
Y |
A matrix sharing the column space with X (??? x N) |
J |
The rank parameter to decompose the matrices |
eta |
A learning rate parameter of stochastic gradient descent |
verbose |
Verbose option |
mu |
A learning rate parameter of stochastic gradient descent |
gamma_ts |
Weighting factor for dependence on independence |
Value
A list containing the result of the decomposition
Examples
X <- array(runif(10*20), dim=c(10,20))
Y <- array(runif(15*20), dim=c(15,20))
J <- 20
out <- MICA(X, Y, J=J)
[Package iTensor version 1.0.2 Index]