ICA2 {iTensor} | R Documentation |
Independent Component Analysis (Modern Methods)
Description
The input data is assumed to be a matrix. ICA decomposes the matrix and extract the components that are statistically independent each other.
Usage
ICA2(
X,
J,
algorithm = c("JADE", "AuxICA1", "AuxICA2", "IPCA", "SIMBEC", "AMUSE", "SOBI", "FOBI",
"ProDenICA", "RICA"),
num.iter = NULL,
thr = 1e-10,
r_list = NULL,
omega_for_each_r = NULL,
a_r_for_each_r = NULL,
tau_list = NULL,
num_bins = NULL,
alpha = NULL,
num_epoch = NULL,
verbose = FALSE
)
Arguments
X |
A matrix |
J |
Rank parameter to decompose |
algorithm |
The decomposition algorithm (Default: "JADE") |
num.iter |
The number of iteration |
thr |
The threshold to terminate the iteration (Default: 1E-10) |
r_list |
List of r-th order cumulants used in SIMBEC (Default: NULL) |
omega_for_each_r |
Weight vector of r_list used in SIMBEC (Default: NULL) |
a_r_for_each_r |
Parameter vector to specify the shape of partial activation function in SIMBEC (Default: NULL) |
tau_list |
List of lags to consider the auto-correlation used in AMUSE and SOBI (Default: NULL) |
num_bins |
Number of bins for histgram in ProDenICA (Default: NULL) |
alpha |
Learning rate used for gradient descent in RICA (Default: NULL) |
num_epoch |
Number of epoch used for gradient descent in RICA (Default: NULL) |
verbose |
Verbose option |
Value
A list containing the result of the decomposition
Examples
ICA2