| ICA2 {iTensor} | R Documentation | 
Independent Component Analysis (Modern Methods)
Description
The input data is assumed to be a matrix. ICA decomposes the matrix and extract the components that are statistically independent each other.
Usage
ICA2(
  X,
  J,
  algorithm = c("JADE", "AuxICA1", "AuxICA2", "IPCA", "SIMBEC", "AMUSE", "SOBI", "FOBI",
    "ProDenICA", "RICA"),
  num.iter = NULL,
  thr = 1e-10,
  r_list = NULL,
  omega_for_each_r = NULL,
  a_r_for_each_r = NULL,
  tau_list = NULL,
  num_bins = NULL,
  alpha = NULL,
  num_epoch = NULL,
  verbose = FALSE
)
Arguments
| X | A matrix | 
| J | Rank parameter to decompose | 
| algorithm | The decomposition algorithm (Default: "JADE") | 
| num.iter | The number of iteration | 
| thr | The threshold to terminate the iteration (Default: 1E-10) | 
| r_list | List of r-th order cumulants used in SIMBEC (Default: NULL) | 
| omega_for_each_r | Weight vector of r_list used in SIMBEC (Default: NULL) | 
| a_r_for_each_r | Parameter vector to specify the shape of partial activation function in SIMBEC (Default: NULL) | 
| tau_list | List of lags to consider the auto-correlation used in AMUSE and SOBI (Default: NULL) | 
| num_bins | Number of bins for histgram in ProDenICA (Default: NULL) | 
| alpha | Learning rate used for gradient descent in RICA (Default: NULL) | 
| num_epoch | Number of epoch used for gradient descent in RICA (Default: NULL) | 
| verbose | Verbose option | 
Value
A list containing the result of the decomposition
Examples
ICA2