| ICA {iTensor} | R Documentation | 
Independent Component Analysis (Classic Methods)
Description
The input data is assumed to be a matrix. ICA decomposes the matrix and extract the components that are statistically independent each other.
Usage
ICA(
  X,
  J,
  algorithm = c("FastICA", "InfoMax", "ExtInfoMax"),
  num.iter = 100,
  thr = 1e-10,
  nonlinear_func = c("tanh", "exp", "kurtosis"),
  learning_rate = 1,
  verbose = FALSE
)
Arguments
| X | A matrix | 
| J | Rank parameter to decompose | 
| algorithm | The decomposition algorithm (Default: "FastICA") | 
| num.iter | The number of iteration | 
| thr | The threshold to terminate the iteration (Default: 1E-10) | 
| nonlinear_func | The function used in FastICA (Default: "tanh") | 
| learning_rate | The learning rate used in InfoMax or ExtInfoMax | 
| verbose | Verbose option | 
Value
A list containing the result of the decomposition
Examples
X <- matrix(runif(100*200), nrow=100, ncol=200)
J <- 5
out.FastICA <- ICA(X, J=J, algorithm="FastICA")
out.InfoMax <- ICA(X, J=J, algorithm="InfoMax")
out.ExtInfoMax <- ICA(X, J=J, algorithm="ExtInfoMax")
[Package iTensor version 1.0.2 Index]