ICA {iTensor} | R Documentation |
Independent Component Analysis (Classic Methods)
Description
The input data is assumed to be a matrix. ICA decomposes the matrix and extract the components that are statistically independent each other.
Usage
ICA(
X,
J,
algorithm = c("FastICA", "InfoMax", "ExtInfoMax"),
num.iter = 100,
thr = 1e-10,
nonlinear_func = c("tanh", "exp", "kurtosis"),
learning_rate = 1,
verbose = FALSE
)
Arguments
X |
A matrix |
J |
Rank parameter to decompose |
algorithm |
The decomposition algorithm (Default: "FastICA") |
num.iter |
The number of iteration |
thr |
The threshold to terminate the iteration (Default: 1E-10) |
nonlinear_func |
The function used in FastICA (Default: "tanh") |
learning_rate |
The learning rate used in InfoMax or ExtInfoMax |
verbose |
Verbose option |
Value
A list containing the result of the decomposition
Examples
X <- matrix(runif(100*200), nrow=100, ncol=200)
J <- 5
out.FastICA <- ICA(X, J=J, algorithm="FastICA")
out.InfoMax <- ICA(X, J=J, algorithm="InfoMax")
out.ExtInfoMax <- ICA(X, J=J, algorithm="ExtInfoMax")
[Package iTensor version 1.0.2 Index]