| GroupICA {iTensor} | R Documentation | 
Group Independent Component Analysis (GroupICA)
Description
The input data is assumed to be a list containing multiple matrices, which share common column.
Usage
GroupICA(
  Xs,
  J1,
  J2 = J1,
  algorithm = c("pooled", "Calhoun2009", "Pfister2018"),
  ica.algorithm = c("FastICA", "InfoMax", "ExtInfoMax", "JADE", "AuxICA1", "AuxICA2",
    "IPCA", "SIMBEC", "AMUSE", "SOBI", "FOBI", "ProDenICA", "RICA"),
  num.iter = 30,
  thr = 1e-10,
  verbose = FALSE
)
Arguments
| Xs | A list containing multiple matrices | 
| J1 | Rank parameter to decompose | 
| J2 | Rank parameter used in Calhoun2009 | 
| algorithm | Pool algorithm to merge multiple ICA results (Default: pooled) | 
| ica.algorithm | The decomposition algorithm (Default: "FastICA") | 
| num.iter | The number of iterations | 
| thr | The threshold to terminate the iteration (Default: 1E-10) | 
| verbose | Verbose option | 
Value
A list containing the result of the decomposition
Examples
X1 <- matrix(runif(100*200), nrow=100, ncol=200)
X2 <- matrix(runif(150*200), nrow=150, ncol=200)
Xs <- list(X1=X1, X2=X2)
out <- GroupICA(Xs, J1=5)
[Package iTensor version 1.0.2 Index]