GroupICA {iTensor} | R Documentation |
Group Independent Component Analysis (GroupICA)
Description
The input data is assumed to be a list containing multiple matrices, which share common column.
Usage
GroupICA(
Xs,
J1,
J2 = J1,
algorithm = c("pooled", "Calhoun2009", "Pfister2018"),
ica.algorithm = c("FastICA", "InfoMax", "ExtInfoMax", "JADE", "AuxICA1", "AuxICA2",
"IPCA", "SIMBEC", "AMUSE", "SOBI", "FOBI", "ProDenICA", "RICA"),
num.iter = 30,
thr = 1e-10,
verbose = FALSE
)
Arguments
Xs |
A list containing multiple matrices |
J1 |
Rank parameter to decompose |
J2 |
Rank parameter used in Calhoun2009 |
algorithm |
Pool algorithm to merge multiple ICA results (Default: pooled) |
ica.algorithm |
The decomposition algorithm (Default: "FastICA") |
num.iter |
The number of iterations |
thr |
The threshold to terminate the iteration (Default: 1E-10) |
verbose |
Verbose option |
Value
A list containing the result of the decomposition
Examples
X1 <- matrix(runif(100*200), nrow=100, ncol=200)
X2 <- matrix(runif(150*200), nrow=150, ncol=200)
Xs <- list(X1=X1, X2=X2)
out <- GroupICA(Xs, J1=5)
[Package iTensor version 1.0.2 Index]