scca {iSFun} | R Documentation |
Sparse canonical correlation analysis
Description
This function provides penalty-based sparse canonical correlation analysis to get the first pair of canonical vectors.
Usage
scca(x, y, mu1, mu2, eps = 1e-04, scale.x = TRUE, scale.y = TRUE,
maxstep = 50, trace = FALSE)
Arguments
x |
data matrix of explanatory variables |
y |
data matrix of dependent variables. |
mu1 |
numeric, sparsity penalty parameter for vector u. |
mu2 |
numeric, sparsity penalty parameter for vector v. |
eps |
numeric, the threshold at which the algorithm terminates. |
scale.x |
character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE. |
scale.y |
character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE. |
maxstep |
numeric, maximum iteration steps. The default value is 50. |
trace |
character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables. |
Value
An 'scca' object that contains the list of the following items.
x: data matrix of explanatory variables with centered columns. If scale.x is TRUE, the columns of data matrix are standardized to have mean 0 and standard deviation 1.
y: data matrix of dependent variables with centered columns. If scale.y is TRUE, the columns of data matrix are standardized to have mean 0 and standard deviation 1.
loading.x: the estimated canonical vector of variables x.
loading.y: the estimated canonical vector of variables y.
variable.x: the screening results of variables x.
variable.y: the screening results of variables y.
meanx: column mean of the original dataset x.
normx: column standard deviation of the original dataset x.
meany: column mean of the original dataset y.
normy: column standard deviation of the original dataset y.
See Also
Examples
library(iSFun)
data("simData.cca")
x.scca <- do.call(rbind, simData.cca$x)
y.scca <- do.call(rbind, simData.cca$y)
res_scca <- scca(x = x.scca, y = y.scca, mu1 = 0.1, mu2 = 0.1, eps = 1e-3,
scale.x = TRUE, scale.y = TRUE, maxstep = 50, trace = FALSE)