meta.scca {iSFun} | R Documentation |
Meta-analytic sparse canonical correlation analysis method in integrative study
Description
This function provides penalty-based sparse canonical correlation meta-analytic method to handle the multiple datasets with high dimensions generated under similar protocols, which is based on the principle of maximizing the summary statistics S.
Usage
meta.scca(x, y, L, mu1, mu2, eps = 1e-04, scale.x = TRUE,
scale.y = TRUE, maxstep = 50, trace = FALSE)
Arguments
x |
list of data matrices, L datasets of explanatory variables. |
y |
list of data matrices, L datasets of dependent variables. |
L |
numeric, number of datasets. |
mu1 |
numeric, sparsity penalty parameter for vector u. |
mu2 |
numeric, sparsity penalty parameter for vector v. |
eps |
numeric, the threshold at which the algorithm terminates. |
scale.x |
character, "TRUE" or "FALSE", whether or not to scale the variables x. The default is TRUE. |
scale.y |
character, "TRUE" or "FALSE", whether or not to scale the variables y. The default is TRUE. |
maxstep |
numeric, maximum iteration steps. The default value is 50. |
trace |
character, "TRUE" or "FALSE". If TRUE, prints out its screening results of variables. |
Value
A 'meta.scca' object that contains the list of the following items.
x: list of data matrices, L datasets of explanatory variables with centered columns. If scale.x is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
y: list of data matrices, L datasets of dependent variables with centered columns. If scale.y is TRUE, the columns of L datasets are standardized to have mean 0 and standard deviation 1.
loading.x: the estimated canonical vector of variables x.
loading.y: the estimated canonical vector of variables y.
variable.x: the screening results of variables x.
variable.y: the screening results of variables y.
meanx: list of numeric vectors, column mean of the original datasets x.
normx: list of numeric vectors, column standard deviation of the original datasets x.
meany: list of numeric vectors, column mean of the original datasets y.
normy: list of numeric vectors, column standard deviation of the original datasets y.
References
Cichonska A, Rousu J, Marttinen P, et al. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis[J]. Bioinformatics, 2016, 32(13): 1981-1989.
See Also
Examples
# Load a list with 3 data sets
library(iSFun)
data("simData.cca")
x <- simData.cca$x
y <- simData.cca$y
L <- length(x)
mu1 <- 0.08
mu2 <- 0.08
res <- meta.scca(x = x, y = y, L = L, mu1 = mu1, mu2 = mu2, trace = TRUE)