roc_curve {iRafNet} | R Documentation |
Plot receiver operating characteristic (ROC) curve for weighted network generated by iRafNet
Description
This function uses R package ROCR to plot ROC curves for iRafNet object.
Usage
roc_curve(out, truth)
Arguments
out |
Output from iRafNet. |
truth |
Matrix of true regulations. Rows correspond to different regulations and match rows of |
Value
Plot ROC curve and return area under ROC curve.
References
Petralia, F., Wang, P., Yang, J., Tu, Z. (2015) Integrative random forest for gene regulatory network inference, Bioinformatics, 31, i197-i205.
Sing, Tobias, et al. (2005) ROCR: visualizing classifier performance in R, Bioinformatics, 21, 3940-3941.
Examples
# --- Generate data sets
n<-20 # sample size
p<-5 # number of genes
genes.name<-paste("G",seq(1,p),sep="") # genes name
data<-matrix(rnorm(p*n),n,p) # generate expression matrix
data[,1]<-data[,2] # var 1 and 2 interact
W<-abs(matrix(rnorm(p*p),p,p)) # generate score for regulatory relationships
# --- Standardize variables to mean 0 and variance 1
data <- (apply(data, 2, function(x) { (x - mean(x)) / sd(x) } ))
# --- Run iRafNet and obtain importance score of regulatory relationships
out<-iRafNet(data,W,mtry=round(sqrt(p-1)),ntree=1000,genes.name)
# --- Matrix of true regulations
truth<-out[,seq(1,2)]
truth<-cbind(as.character(truth[,1]),as.character(truth[,2])
,as.data.frame(rep(0,,dim(out)[1])));
truth[(truth[,1]=="G2" & truth[,2]=="G1") | (truth[,1]=="G1" & truth[,2]=="G2"),3]<-1
# --- Plot ROC curve and compute AUC
auc<-roc_curve(out,truth)
[Package iRafNet version 1.1-1 Index]