| inzpar {iNZightPlots} | R Documentation | 
iNZight Plotting Parameters
Description
Plotting parameters for iNZight Plots
Usage
inzpar(..., .viridis = requireNamespace("viridis", quietly = TRUE))
Arguments
| ... | If arguments are supplied, then these values are set. If left empty, then | 
| .viridis | checks if the viridis package is installed; or can be turned off the default list is returned. | 
Details
A whole suite of parameters that can be used to fine-tune plots obtained from the
iNZightPlot function.
The parameters include both plot type, style, and appearance.
- 'pch'
- the plotting symbol to be used; default is '21' (circle with fill) 
- 'col.pt'
- the colour of points. this can either be a single value, or a vector of colours if - colbyis specified
- 'col.fun'
- a function to use for colouring points, etc., or the name of a palette, see - inzpalette
- 'col.emph', 'col.emphn'
- emphasize the chosen level of a colour by variable. For numeric colour by, - col.emphnspecifies the number of quantiles to use.
- 'emph.on.top'
- if - TRUE, emphasised points will be positioned on top
- 'col.default'
- the default colour functions, containing a list with entries for 'cat' and 'cont' variables 
- 'col.missing'
- the colour for missing values; default is a light grey 
- 'reverse.palette'
- logical, if - TRUEthe palette will be reversed
- 'col.method'
- the method to use for colouring by a variable, one of 'linear' or 'rank' 
- 'cex'
- the overall scaling for the entire plot; values less than 1 will make the text and points smaller, while values larger than 1 will magnify everything 
- 'cex.pt'
- the scaling value for points 
- 'cex.dotpt'
- 
the scaling value for points in a dotplot. Note, this is not multiplicative with 'cex.pt'
- 'cex.lab'
- the scaling value for the plot labels 
- 'cex.axis'
- the scaling value for the axis labels 
- 'cex.main'
- the scaling value for the main plot title 
- 'cex.text'
- the scaling value for text on the plot 
- 'resize.method'
- one of 'proportional' (default) or 'emphasize' 
- 'alpha'
- transparency setting for points; default is 1, 0 is fully transparent 
- 'bg'
- the background colour for the plot 
- 'grid.lines'
- logical to control drawing of axis grid lines 
- 'col.grid'
- if 'grid.lines' is - TRUE, this controls the colour of them. The default is 'default', which will choose a colour based on the value of 'bg')
- 'fill.pt'
- the fill colour for points; default is - "transparent"
- 'lwd'
- the line width of lines (for joining points) 
- 'lty'
- the line type of lines (for joining points) 
- 'lwd.pt'
- the line width used for points; default is 2 
- 'col.line'
- the colour of lines used to join points 
- 'col.sub'
- vector of up to two colours for the background of subplot labels. If only one specified, it is used for both. 
- 'locate.col.def'
- the default colour for locating points 
- 'highlight.col'
- colour to use for highlighting points 
- 'jitter'
- the axes to add jitter to. Takes values - "x",- "y", or- "xy"(default is en empty string,- "")
- 'rugs'
- the axes to add rugs to. Takes same values as - jitter
- 'trend'
- a vector containing the trend lines to add to the plot. Possible values are - c("linear", "quadratic", "cubic")
- 'smooth'
- the smoothing (lowess) for the points. Takes a value between 0 and 1 (the default, 0, draws no smoother) 
- 'smoothby.lty'
- the line type used for smoothers if - trend.by = TRUE
- 'quant.smooth'
- if quantile smoothers are desired, they can be specified here as either the quantiles to smooth over (e.g., - c(0.25, 0.5, 0.75)), or- "default", which uses the sample size to decide on an appropriate set of quantile smoothers
- 'LOE'
- logical, if - TRUE, then a 1-1 line of equality is drawn
- 'join'
- logical, if - TRUE, then points are joined by lines
- 'lines.by
- logical, if - join = TRUEand- colbyis specified, points are joined by the specified variable
- 'col.trend'
- a named list of colours to be used for drawing the lines. The default is - list(linear = "blue", quadratic = "red", cubic = "green4")
- 'lty.trend'
- a named list of line types for various types of trend lines. The default is - list(linear = 1, quadratic = 2, cubic = 3)
- 'trend.by'
- logical, if - TRUE, then trend lines are drawn separately for each group specified by- colby
- 'trend.parallel'
- logical, if - TRUE, the trend lines by group are given the same slope; otherwise they are fit independently
- 'col.smooth'
- the colour of the smoother 
- 'col.LOE'
- the colour of the line of equality 
- 'lty.LOE'
- the line type of the line of equality 
- 'boxplot'
- logical, if - TRUE, a boxplot is drawn with dotplots and histograms
- 'box.lwd', 'box.col', 'box.fill'
- the line width, colour, and fill colour for the box plot drawn 
- 'bar.lwd', 'bar.col', 'bar.fill'
- the line width, colour, and fill colour of bars in a bar plot 
- 'bar.counts'
- logical, if - TRUEbar graphs will display counts instead of percentages (the default)
- 'full.height'
- may no longer be necessary ... 
- 'inf.lwd.comp', 'inf.lwd.conf'
- the line width of comparison and confidence intervals, respectively 
- 'inf.col.comp', 'inf.col.conf'
- the colour of comparison and confidence intervals, respectively. These take a length 2 vector, where the first element is used for normal inference, while the second is used for bootstrap intervals 
- 'inference.type'
- the type of inference added to the plot. Possible values are - c("comp", "conf")
- 'inference.par'
- the parameter which we obtain intervals for. For a dotplot or histogram, this can be either - "mean"or- "median"; for bar plots it can be "proportion"
- 'ci.width'
- the width of confidence intervals, default 0.95 for a 95% confidence interval 
- 'bs.inference'
- logical, if - TRUE, then nonparametric bootstrap simulation is used to obtain the intervals
- 'min.count'
- the min count for barplots inference; counts less than this are ignored 
- 'n.boot'
- the number of bootstrap simulations to perform 
- 'large.sample.size'
- sample sizes over this value will use a large-sample plot variant (i.e., scatter plots will become hex plots, dot plots become histograms) 
- 'largesample'
- logical, if - TRUE, then the large-sample plot variance is used
- 'scatter.grid.bins'
- the number, N, of bins to use for the scatter-grid plot, producing an N x N matrix 
- 'hex.bins'
- the number of bins to use for hexagonal binning 
- 'hex.style'
- the style of the hexagons, one of "size" or "alpha" 
- 'hex.diffuse'
- logical, Pass on rounding error to nearest not-yet-drawn hexes so that rare classes get represented 
- 'hist.bins'
- the number of bins to use for the histogram (The default - NULLuses point size to approximate dot plot)
- 'quant.cutoff'
- if - quant.smooth = "default", these sample size values are used to determine which quantiles are drawn
- 'plottype'
- used to override the default plot type. Possible values, depending on data type, include - c("scatter"|"grid"|"hex"|"dot"|"hist")
- 'matchplots'
- logical, if - TRUE, then the type of plot is kept consistent between different subsets
- 'match.limits'
- a vector of two values used to decide whether to use all small-sample or all large-sample plots 
- 'xlim'
- a vector defining the x axis limits (default NULL will use the data) 
- 'ylim'
- a vector defining the y axis limits (default NULL will use the data) 
- 'transform'
- a list of variable transformations (e.g., list(x = 'log')) 
- 'plot.features'
- a list containing any additional features for new plots (e.g., maptype) 
- 'round'
- integer specifying optional rounding of numerical output, default NA (ignored) 
- 'round_percent'
- integer specifying rounding for percentages (default 2) 
- 'signif'
- integer specifying number of significant figured in numeric output (default 2). Ignored if - roundis not NA.
Value
an object of class inzpar.list
Examples
# arguments can be passed directly to \code{iNZightPlot}
iNZightPlot(Sepal.Length,
    data = iris, col.pt = "red",
    box.col = "blue", box.fill = "green"
)
# or stored and passed to it (only pars relevant to the current
# plot are used)
mypar <- inzpar(
    col.pt = "red", box.col = "blue", box.fill = "green",
    trend = "linear", trend.by = TRUE
)
inzplot(Sepal.Length ~ Species, data = iris, inzpar = mypar)
iNZightPlot(Sepal.Length, Sepal.Width,
    data = iris, inzpar = mypar,
    colby = Species
)