Completeness {iNEXT.4steps} | R Documentation |
Main function for STEP 1: Assessment of sample completeness
Description
Completeness
computes sample completeness estimates of orders q = 0 to 2 in increments of 0.2 (by default).
Usage
Completeness(
data,
q = seq(0, 2, 0.2),
datatype = "abundance",
nboot = 30,
conf = 0.95,
nT = NULL
)
Arguments
data |
(a) For |
q |
a numerical vector specifying the orders of sample completeness. Default is |
datatype |
data type of input data: individual-based abundance data ( |
nboot |
a positive integer specifying the number of bootstrap replications when assessing sampling uncertainty and constructing confidence intervals. Enter 0 to skip the bootstrap procedures. Default is 30. |
conf |
a positive number < 1 specifying the level of confidence interval. Default is 0.95. |
nT |
(required only when |
Value
a matrix of estimated sample completeness of order q:
Order.q |
the order of sample completeness. |
Estimate.SC |
the estimated sample completeness of order q. |
s.e. |
standard error of sample completeness estimate. |
SC.LCL , SC.UCL |
the bootstrap lower and upper confidence limits for the sample completeness of order q at the specified level (with a default value of |
Assemblage |
the assemblage name. |
Examples
## Sample completeness for abundance data
data(Data_spider)
SC_out1 <- Completeness(data = Data_spider, datatype = "abundance")
SC_out1
## Sample completeness for incidence raw data
data(Data_woody_plant)
SC_out2 <- Completeness(data = Data_woody_plant, datatype = "incidence_raw")
SC_out2