estimate.null.distribution.correlation {iDOS} | R Documentation |
estimate.null.distribution.correlation
Description
Function to estimate probability of observing correlations as high as observed using a feature list of interest
Usage
estimate.null.distribution.correlation(
exp.data = NULL,
cna.data.log2 = NULL,
corr.threshold = 0.3,
corr.direction = "two.sided",
subtypes.metadata = NULL,
feature.ids = NULL,
observed.correlated.features = NULL,
iterations = 50,
cancer.type = NULL,
data.dir = NULL
)
Arguments
exp.data |
Feature by sample mRNA abundance matrix |
cna.data.log2 |
Feature by sample CNA log ratio matrix |
corr.threshold |
Threshold for Spearman's Rho to consider a feature as candidate driver |
corr.direction |
Whether to include positively (greater), negatively (less) or both (two.sided) correlated features. Defaults to |
subtypes.metadata |
Subtypes metadata list. Contains at least subtype specific samples |
feature.ids |
Vector of features to be used to estimate correlation |
observed.correlated.features |
List of features that were found to be correlated for subtypes of a given cancer type |
iterations |
Number of random permutations for estimating p value |
cancer.type |
Name of the cancer type or dataset |
data.dir |
Path to output directory where the randomisation results will be stored |
Value
1 if successful
Author(s)
Syed Haider
See Also
estimate.expression.cna.correlation
Examples
# load test data
x <- get.test.data(data.types = c("mRNA.T", "CNA"));
# temporary output directory
tmp.output.dir <- tempdir();
# estimate mRNA and CNA correlation for each cancer/disease type
correlated.features <- estimate.expression.cna.correlation(
exp.data = x$mRNA.T$BLCA,
cna.data.log2 = x$CNA.log2$BLCA,
corr.threshold = 0.3,
corr.direction = "two.sided",
subtypes.metadata = list(
"subtype.samples.list" = list("All" = colnames(x$mRNA.T$BLCA))
),
feature.ids = rownames(x$mRNA.T$BLCA),
cancer.type = "BLCA",
data.dir = paste(tmp.output.dir, "/data/BLCA/", sep = ""),
graphs.dir = paste(tmp.output.dir, "/graphs/BLCA/", sep = "")
);
# estimate NULL distribution
estimate.null.distribution.correlation(
exp.data = x$mRNA.T$BLCA,
cna.data.log2 = x$CNA.log2$BLCA,
corr.threshold = 0.3,
corr.direction = "two.sided",
subtypes.metadata = list(
"subtype.samples.list" = list("All" = colnames(x$mRNA.T$BLCA))
),
feature.ids = rownames(x$mRNA.T$BLCA),
observed.correlated.features = correlated.features$correlated.genes.subtypes,
iterations = 50,
cancer.type = "BLCA",
data.dir = paste(tmp.output.dir, "/data/BLCA/", sep = "")
);