chmap {iClusterVB} | R Documentation |
Generates a heat map based on an iClusterVB object
Description
Generates a heat map based on an iClusterVB object
Usage
chmap(fit, rho = 0.5, cols = NULL, title = NULL, ...)
Arguments
fit |
A fitted iClusterVB object. |
rho |
The minimum probability of inclusion for features shown on the heatmap. Default is 0.5. 0 would show all features. Only useful for VS_method = 1. |
cols |
A vector of colors to use for the clusters. The default is a random selection of colors. |
title |
A character vector or a single value. Title of the heat map. The default is "View 1 - Distribution 1", ..., "View R - Distribution R". |
... |
Additional arguments to be passed down to
|
Value
Returns a heat map for each data view.
Examples
# Setting up the data
dat1 <- list(
gauss_1 = sim_data$continuous1_data[c(1:20, 61:80, 121:140, 181:200), 1:75],
gauss_2 = sim_data$continuous2_data[c(1:20, 61:80, 121:140, 181:200), 1:75],
poisson_1 = sim_data$count_data[c(1:20, 61:80, 121:140, 181:200), 1:75],
multinomial_1 = sim_data$binary_data[c(1:20, 61:80, 121:140, 181:200), 1:75]
)
# Recoding `0`s to `2`s
dat1$multinomial_1[dat1$multinomial_1 == 0] <- 2
dist <- c(
"gaussian", "gaussian",
"poisson", "multinomial"
)
fit_iClusterVB <- iClusterVB(
mydata = dat1,
dist = dist,
K = 4,
initial_method = "VarSelLCM",
VS_method = 1,
max_iter = 25
)
# We can set the colors
chmap(fit_iClusterVB, cols = c("red", "blue", "green", "purple"))
# We can turn off scaling and set titles
chmap(fit_iClusterVB,
cols = c("red", "blue", "green", "purple"),
title = c("Gene Expression", "DNA Methylation", "Copy Number", "Mutation Status"),
scale = "none"
)
[Package iClusterVB version 0.1.1 Index]