print.break_down_uncertainty {iBreakDown} | R Documentation |
Print Generic for Break Down Uncertainty Objects
Description
Print Generic for Break Down Uncertainty Objects
Usage
## S3 method for class 'break_down_uncertainty'
print(x, ...)
Arguments
x |
an explanation created with |
... |
other parameters. |
Value
a data frame.
References
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
Examples
library("DALEX")
library("iBreakDown")
set.seed(1313)
model_titanic_glm <- glm(survived ~ gender + age + fare,
data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
data = titanic_imputed,
y = titanic_imputed$survived,
label = "glm")
bd_glm <- break_down_uncertainty(explain_titanic_glm, titanic_imputed[1, ])
bd_glm
plot(bd_glm)
## Not run:
## Not run:
library("randomForest")
set.seed(1313)
model <- randomForest(status ~ . , data = HR)
new_observation <- HR_test[1,]
explainer_rf <- explain(model,
data = HR[1:1000,1:5],
y = HR$status[1:1000],
verbose = FALSE)
bd_rf <- break_down_uncertainty(explainer_rf,
new_observation)
bd_rf
# example for regression - apartment prices
# here we do not have intreactions
model <- randomForest(m2.price ~ . , data = apartments)
explainer_rf <- explain(model,
data = apartments_test[1:1000,2:6],
y = apartments_test$m2.price[1:1000])
bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,])
bd_rf
## End(Not run)
[Package iBreakDown version 2.1.2 Index]