| break_down_uncertainty {iBreakDown} | R Documentation | 
Explanation Level Uncertainty of Sequential Variable Attribution
Description
This function calculates the break down algorithm for B random orderings.
Then it calculates the distribution of attributions for these different orderings.
Note that the shap() function is just a simplified interface to the break_down_uncertainty() function
with a default value set to B=25.
Usage
break_down_uncertainty(x, ..., keep_distributions = TRUE, B = 10)
## S3 method for class 'explainer'
break_down_uncertainty(
  x,
  new_observation,
  ...,
  keep_distributions = TRUE,
  B = 10
)
## Default S3 method:
break_down_uncertainty(
  x,
  data,
  predict_function = predict,
  new_observation,
  label = class(x)[1],
  ...,
  path = NULL,
  keep_distributions = TRUE,
  B = 10
)
shap(x, ..., B = 25)
Arguments
x | 
 an explainer created with function   | 
... | 
 other parameters.  | 
keep_distributions | 
 if   | 
B | 
 number of random paths  | 
new_observation | 
 a new observation with columns that correspond to variables used in the model.  | 
data | 
 validation dataset, will be extracted from   | 
predict_function | 
 predict function, will be extracted from   | 
label | 
 name of the model. By default it's extracted from the 'class' attribute of the model.  | 
path | 
 if specified, then this path will be highlighed on the plot. Use   | 
Value
an object of the break_down_uncertainty class.
References
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
See Also
break_down, local_attributions
Examples
library("DALEX")
library("iBreakDown")
set.seed(1313)
model_titanic_glm <- glm(survived ~ gender + age + fare,
                       data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
                               data = titanic_imputed,
                               y = titanic_imputed$survived,
                           label = "glm")
# there is no explanation level uncertanity linked with additive models
bd_glm <- break_down_uncertainty(explain_titanic_glm, titanic_imputed[1, ])
bd_glm
plot(bd_glm)
## Not run: 
## Not run:
library("randomForest")
set.seed(1313)
model <- randomForest(status ~ . , data = HR)
new_observation <- HR_test[1,]
explainer_rf <- explain(model,
                        data = HR[1:1000, 1:5])
bd_rf <- break_down_uncertainty(explainer_rf,
                           new_observation)
bd_rf
plot(bd_rf)
# example for regression - apartment prices
# here we do not have intreactions
model <- randomForest(m2.price ~ . , data = apartments)
explainer_rf <- explain(model,
                        data = apartments_test[1:1000, 2:6],
                        y = apartments_test$m2.price[1:1000])
bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,])
bd_rf
plot(bd_rf)
bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = 1:5)
plot(bd_rf)
bd_rf <- break_down_uncertainty(explainer_rf,
                                     apartments_test[1,],
                                     path = c("floor", "no.rooms", "district",
                                         "construction.year", "surface"))
plot(bd_rf)
bd <- break_down(explainer_rf,
                    apartments_test[1,])
plot(bd)
s <- shap(explainer_rf,
                   apartments_test[1,])
plot(s)
## End(Not run)