iBST-package {iBST} | R Documentation |
improper Bagging Subsample Survival Tree
Description
Fit a bagging survival tree on a mixture of population (susceptible and nonsusceptible)using either a pseudo R2 criterion or an adjusted Logrank criterion. The predictor is evaluated using the Out Of Bag Integrated Brier Score (IBS) and several scores of importanceare computed for variable selection. The thresholds values for variable selection are computed using a nonparametric permutation test. See Cyprien Mbogning and Philippe Broet (2016)<doi:10.1186/s12859-016-1090-x> for an overview about the methods implemented in this package.
Details
Package: | iBST |
Type: | Package |
Version: | 1.2 |
Date: | 2023-01-12 |
License: | GPL(>=2.0) |
Author(s)
Cyprien Mbogning and Philippe Broet
Maintainer: Cyprien Mbogning <cyprien.mbogning@gmail.com>
References
Mbogning, C. and Broet, P. (2016). Bagging survival tree procedure for variable selection and prediction in the presence of nonsusceptible patients. BMC bioinformatics, 17(1), 1.
Duhaze Julianne et al. (2020). A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort. Frontiers in Immunology, 11.
See Also
Bagg_Surv
Bagg_pred_Surv
improper_tree
Examples
## Not run:
data(burn)
myarg = list(cp = 0, maxcompete = 0, maxsurrogate = 0, maxdepth = 2)
Y.names = c("T3" ,"D3")
P.names = 'Z2'
T.names = c("Z1", paste("Z", 3:11, sep = ''))
mybag = 40
feat_samp = length(T.names)
set.seed(5000)
## fit an improper survival tree
burn.tree <- suppressWarnings(improper_tree(burn,
Y.names,
P.names,
T.names,
method = "R2",
args.rpart = myarg))
plot(burn.tree)
text(burn.tree, cex = .7, xpd = TRUE)
## fit an improper Bagging survival tree with the adjusted Logrank criterion
burn.BagEssai0 <- suppressWarnings(Bagg_Surv(burn,
Y.names,
P.names,
T.names,
method = "LR",
args.rpart = myarg,
args.parallel = list(numWorkers = 1),
Bag = mybag, feat = feat_samp))
## fit an improper Bagging survival tree with the pseudo R2 criterion
burn.BagEssai1 <- suppressWarnings(Bagg_Surv(burn,
Y.names,
P.names,
T.names,
method = "R2",
args.rpart = myarg,
args.parallel = list(numWorkers = 1),
Bag = mybag, feat = feat_samp))
## Plot the variable importance scores
par(mfrow=c(1,3))
barplot(burn.BagEssai1$IIS,
main = 'IIS',
horiz = TRUE,
las = 1,
cex.names = .8,
col = 'lightblue')
barplot(burn.BagEssai1$DIIS,
main = 'DIIS',
horiz = TRUE,
las = 1,
cex.names = .8,
col = 'grey')
barplot(burn.BagEssai1$DEPTH,
main = 'MinDepth',
horiz = TRUE,
las = 1,
cex.names = .8,
col = 'purple')
## evaluation of the Bagging predictors
pred0 <- suppressWarnings(Bagg_pred_Surv(burn,
Y.names,
P.names,
burn.BagEssai0,
args.parallel = list(numWorkers = 1),
OOB = TRUE))
pred1 <- suppressWarnings(Bagg_pred_Surv(burn,
Y.names,
P.names,
burn.BagEssai1,
args.parallel = list(numWorkers = 1),
OOB = TRUE))
## End(Not run)