IARgamma {iAR} | R Documentation |
Maximum Likelihood Estimation of the IAR-Gamma model
Description
Maximum Likelihood Estimation of the IAR-Gamma model.
Usage
IARgamma(y, st)
Arguments
y |
Array with the time series observations |
st |
Array with the irregular observational times |
Value
A list with the following components:
phi MLE of the phi parameter of the IAR-Gamma model.
mu MLE of the mu parameter of the IAR-Gamma model.
sigma MLE of the sigma parameter of the IAR-Gamma model.
ll Value of the negative log likelihood evaluated in phi, mu and sigma.
References
Eyheramendy S, Elorrieta F, Palma W (2018). “An irregular discrete time series model to identify residuals with autocorrelation in astronomical light curves.” Monthly Notices of the Royal Astronomical Society, 481(4), 4311–4322. ISSN 0035-8711, doi: 10.1093/mnras/sty2487, https://academic.oup.com/mnras/article-pdf/481/4/4311/25906473/sty2487.pdf.
See Also
gentime
, IARgsample
, IARphigamma
Examples
n=300
set.seed(6714)
st<-gentime(n)
y<-IARgsample(phi=0.9,st=st,n=n,sigma2=1,mu=1)
model<-IARgamma(y$y, st=st)
phi=model$phi
muest=model$mu
sigmaest=model$sigma