BIARsample {iAR}R Documentation

Simulate from a BIAR Model

Description

Simulates a BIAR Time Series Model

Usage

BIARsample(n, st, phiR, phiI, delta1 = 0, delta2 = 0, rho = 0)

Arguments

n

Length of the output bivariate time series. A strictly positive integer.

st

Array with observational times.

phiR

Autocorrelation coefficient of BIAR model. A value between -1 and 1.

phiI

Crosscorrelation coefficient of BIAR model. A value between -1 and 1.

delta1

Array with the measurements error standard deviations of the first time series of the bivariate process.

delta2

Array with the measurements error standard deviations of the second time series of the bivariate process.

rho

Contemporary correlation coefficient of BIAR model. A value between -1 and 1.

Details

The chosen phiR and phiI values must satisfy the condition $|phiR + i phiI| < 1$.

Value

A list with the following components:

References

Elorrieta F, Eyheramendy S, Palma W, Ojeda C (2021). “A novel bivariate autoregressive model for predicting and forecasting irregularly observed time series.” Monthly Notices of the Royal Astronomical Society, 505(1), 1105–1116. ISSN 0035-8711, doi: 10.1093/mnras/stab1216, https://academic.oup.com/mnras/article-pdf/505/1/1105/38391762/stab1216.pdf.

See Also

gentime

Examples

n=300
set.seed(6714)
st<-gentime(n)
x=BIARsample(n=n,phiR=0.9,phiI=0.3,st=st)
plot(st,x$y[1,],type='l')
plot(st,x$y[2,],type='l')
x=BIARsample(n=n,phiR=-0.9,phiI=-0.3,st=st)
plot(st,x$y[1,],type='l')
plot(st,x$y[2,],type='l')

[Package iAR version 1.2.0 Index]