BIARfit {iAR}R Documentation

Fitted Values of BIAR model

Description

Fit a BIAR model to a bivariate irregularly observed time series.

Usage

BIARfit(phiValues, y1, y2, t, yerr1, yerr2, zeroMean = TRUE)

Arguments

phiValues

An array with the parameters of the BIAR model. The elements of the array are, in order, the autocorrelation and the cross correlation parameter of the BIAR model.

y1

Array with the observations of the first time series of the BIAR process.

y2

Array with the observations of the second time series of the BIAR process.

t

Array with the irregular observational times.

yerr1

Array with the measurements error standard deviations of the first time series of the BIAR process.

yerr2

Array with the measurements error standard deviations of the second time series of the BIAR process.

zeroMean

logical; if TRUE, the array y has zero mean; if FALSE, y has a mean different from zero.

Value

A list with the following components:

References

Elorrieta F, Eyheramendy S, Palma W, Ojeda C (2021). “A novel bivariate autoregressive model for predicting and forecasting irregularly observed time series.” Monthly Notices of the Royal Astronomical Society, 505(1), 1105–1116. ISSN 0035-8711, doi: 10.1093/mnras/stab1216, https://academic.oup.com/mnras/article-pdf/505/1/1105/38391762/stab1216.pdf.

See Also

gentime, BIARsample, BIARphikalman, BIARkalman

Examples


n=80
set.seed(6714)
st<-gentime(n)
x=BIARsample(n=n,phiR=0.9,phiI=0.3,st=st,rho=0.9)
y=x$y
y1=y/apply(y,1,sd)
yerr1=rep(0,n)
yerr2=rep(0,n)
biar=BIARkalman(y1=y1[1,],y2=y1[2,],t=st,delta1 = yerr1,delta2=yerr2)
biar
predbiar=BIARfit(phiValues=c(biar$phiR,biar$phiI),y1=y1[1,],y2=y1[2,],t=st,yerr1
 = rep(0,length(y[1,])),yerr2=rep(0,length(y[1,])))
rho=predbiar$rho
print(rho)
yhat=predbiar$fitted


[Package iAR version 1.2.0 Index]