nrmse {hydroGOF} | R Documentation |
Normalized Root Mean Square Error
Description
Normalized root mean square error (NRMSE) between sim
and obs
, with treatment of missing values.
Usage
nrmse(sim, obs, ...)
## Default S3 method:
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'data.frame'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'matrix'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'zoo'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
Arguments
sim |
numeric, zoo, matrix or data.frame with simulated values |
obs |
numeric, zoo, matrix or data.frame with observed values |
na.rm |
a logical value indicating whether 'NA' should be stripped before the computation proceeds. |
norm |
character, indicating the value to be used for normalising the root mean square error (RMSE). Valid values are: |
fun |
function to be applied to The first argument MUST BE a numeric vector with any name (e.g., |
... |
arguments passed to |
epsilon.type |
argument used to define a numeric value to be added to both It is was designed to allow the use of logarithm and other similar functions that do not work with zero values. Valid values of 1) "none": 2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is added to both 3) "otherFactor": the numeric value defined in the 4) "otherValue": the numeric value defined in the |
epsilon.value |
-) when |
Details
nrmse = 100 \frac {\sqrt{ \frac{1}{N} \sum_{i=1}^N { \left( S_i - O_i \right)^2 } } } {nval}
nval= \left\{
\begin{array}{cl}
sd(O_i) & , \: \textrm{norm="sd"} \\
O_{max} - O_{min} & , \: \textrm{norm="maxmin"}
\end{array}
\right.
Value
Normalized root mean square error (nrmse) between sim
and obs
. The result is given in percentage (%)
If sim
and obs
are matrixes, the returned value is a vector, with the normalized root mean square error between each column of sim
and obs
.
Note
obs
and sim
have to have the same length/dimension
Missing values in obs
and sim
are removed before the computation proceeds, and only those positions with non-missing values in obs
and sim
are considered in the computation
Author(s)
Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>
See Also
pbias
, pbiasfdc
, mae
, mse
, rmse
, ubRMSE
, ssq
, gof
, ggof
Examples
##################
# Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
nrmse(sim, obs)
obs <- 1:10
sim <- 2:11
nrmse(sim, obs)
##################
# Example 2:
# Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts
# Generating a simulated daily time series, initially equal to the observed series
sim <- obs
# Computing the 'nrmse' for the "best" (unattainable) case
nrmse(sim=sim, obs=obs)
##################
# Example 3: nrmse for simulated values equal to observations plus random noise
# on the first half of the observed values.
# This random noise has more relative importance for ow flows than
# for medium and high flows.
# Randomly changing the first 1826 elements of 'sim', by using a normal distribution
# with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)
nrmse(sim=sim, obs=obs)
##################
# Example 4: nrmse for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' during computations.
nrmse(sim=sim, obs=obs, fun=log)
# Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
nrmse(sim=lsim, obs=lobs)
##################
# Example 5: nrmse for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
# during computations
nrmse(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")
# Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)
##################
# Example 6: nrmse for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and adding a user-defined constant
# during computations
eps <- 0.01
nrmse(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)
# Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)
##################
# Example 7: nrmse for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and using a user-defined factor
# to multiply the mean of the observed values to obtain the constant
# to be added to 'sim' and 'obs' during computations
fact <- 1/50
nrmse(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)
# Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)
##################
# Example 8: nrmse for simulated values equal to observations plus random noise
# on the first half of the observed values and applying a
# user-defined function to 'sim' and 'obs' during computations
fun1 <- function(x) {sqrt(x+1)}
nrmse(sim=sim, obs=obs, fun=fun1)
# Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
nrmse(sim=sim1, obs=obs1)