gibbs_gl {hwep} | R Documentation |
Gibbs sampler under random mating using genotype log-likelihoods.
Description
Gibbs sampler under random mating using genotype log-likelihoods.
Usage
gibbs_gl(
gl,
alpha,
B = 10000L,
T = 1000L,
more = FALSE,
lg = FALSE,
verbose = TRUE
)
Arguments
gl |
The matrix of genotype log-likelihoods. The columns index the
dosages and the rows index the individuals. |
alpha |
Vector of hyperparameters for the gamete frequencies. Should be length (x.length() - 1) / 2 + 1. |
B |
The number of sampling iterations. |
T |
The number of burn-in iterations. |
more |
A logical. Should we also return posterior draws ( |
lg |
Should we return the log marginal likelihood (true) or not (false). |
verbose |
A logical. Should we print the progress? |
Value
A list with some or all of the following elements
mx
: The estimate of the marginal likelihoodp_tilde
: The value of p used to evaluate the posterior density.p
: The samples of the gamete frequenciesz
: The samples of the individual genotypespost
: The samples of the full conditionals of p_tilde.
Author(s)
David Gerard
Examples
set.seed(1)
ploidy <- 8
## Simulate under the null
p <- stats::runif(ploidy / 2 + 1)
p <- p / sum(p)
q <- stats::convolve(p, rev(p), type = "open")
nvec <- c(stats::rmultinom(n = 1, size = 100, prob = q))
gl <- simgl(nvec)
gibbs_gl(gl = gl, alpha = rep(1, ploidy / 2 + 1), lg = TRUE)