update_probs {hurdlr} | R Documentation |
MCMC Probability Update Function for Hurdle Model Count Data Regression
Description
MCMC algorithm for updating the likelihood probabilities in
hurdle model regression using hurdle
.
Usage
update_probs(y, x, hurd, p, q, beta.prior.mean, beta.prior.sd, pZ, pT, pE, beta,
XB2, XB3, beta.acc, beta.tune)
Arguments
y |
numeric response vector. |
x |
optional numeric predictor matrix. |
hurd |
numeric threshold for 'extreme' observations of two-hurdle models. |
p |
numeric vector of current 'p' probability parameter values for zero-value observations. |
q |
numeric vector of current 'q' probability parameter values for 'extreme' observations. |
beta.prior.mean |
mu parameter for normal prior distributions. |
beta.prior.sd |
standard deviation for normal prior distributions. |
pZ |
numeric vector of current 'zero probability' likelihood values. |
pT |
numeric vector of current 'typical probability' likelihood values. |
pE |
numeric vector of current 'extreme probability' likelihood values. |
beta |
numeric matrix of current regression coefficient parameter values. |
XB2 |
|
XB3 |
|
beta.acc |
numeric matrix of current MCMC acceptance rates for regression coefficient parameters. |
beta.tune |
numeric matrix of current MCMC tuning values for regression coefficient estimation. |
Value
A list of MCMC-updated regression coefficients for the estimation of the parameters 'p' (the probability of a zero-value observation) and 'q' (the probability of an 'extreme' observation) as well as each coefficient's MCMC acceptance ratio.
Author(s)
Taylor Trippe <ttrippe@luc.edu>
Earvin Balderama <ebalderama@luc.edu>