| hurdle_control {hurdlr} | R Documentation | 
Control Parameters for Hurdle Model Count Data Regression
Description
Various parameters for fitting control of hurdle 
model regression using hurdle.
Usage
hurdle_control(a = 1, b = 1, size = 1, beta.prior.mean = 0,
  beta.prior.sd = 1000, beta.tune = 1, pars.tune = 0.2, lam.start = 1,
  mu.start = 1, sigma.start = 1, xi.start = 1)
Arguments
| a | shape parameter for gamma prior distributions. | 
| b | rate parameter for gamma prior distributions. | 
| size | size parameter for negative binomial likelihood distributions. | 
| beta.prior.mean | mu parameter for normal prior distributions. | 
| beta.prior.sd | standard deviation for normal prior distributions. | 
| beta.tune | Markov-chain tuning for regression coefficient estimation. | 
| pars.tune | Markov chain tuning for parameter estimation of 'extreme' observations distribution. | 
| lam.start | initial value for the poisson likelihood lambda parameter. | 
| mu.start | initial value for the negative binomial or log normal likelihood mu parameter. | 
| sigma.start | initial value for the generalized pareto likelihood sigma parameter. | 
| xi.start | initial value for the generalized pareto likelihood xi parameter. | 
Value
A list of all input values.
Author(s)
Taylor Trippe <ttrippe@luc.edu> 
Earvin Balderama <ebalderama@luc.edu>