GenPareto {hurdlr} | R Documentation |
The Generalized Pareto Distribution
Description
Density, distribution function, quantile function and random
generation for the Generalized Pareto distribution with parameters
mu
, sigma
, and xi
.
Usage
dgpd(x, mu = 0, sigma = 1, xi = 1, log = F)
mgpd(x, mu = 0, sigma = 1, xi = 1, log = F)
pgpd(q, mu = 0, sigma = 1, xi = 1, lower.tail = T)
qgpd(p, mu = 0, sigma = 1, xi = 1, lower.tail = T)
rgpd(n, mu = 0, sigma = 1, xi = 1)
Arguments
x , q |
vector of quantiles. |
mu |
location parameter. |
sigma |
(non-negative) scale parameter. |
xi |
shape parameter. |
log |
logical; if |
lower.tail |
logical; if |
p |
numeric predictor matrix. |
n |
number of random values to return. |
Details
The generalized pareto distribution has density
f(x) = \frac{\sigma^{\frac{1}{\xi}}}{(\sigma + \xi(x-\mu))^{\frac{1}{\xi}+1}}
Value
dgpd
gives the continuous density, pgpd
gives the distribution
function, qgpd
gives the quantile function, and rgpd
generates random deviates.
mgpd
gives a probability mass function for a discretized version of GPD.
Author(s)
Taylor Trippe <ttrippe@luc.edu>
Earvin Balderama <ebalderama@luc.edu>
Examples
dexp(1,rate=.5) #Exp(rate) equivalent to gpd with mu=0 AND xi=0, and sigma=1/rate.
dgpd(1,mu=0,sigma=2,xi=0) #cannot take xi=0.
dgpd(1,mu=0,sigma=2,xi=0.0000001) #but can get close.
##"mass" function of GPD
mgpd(8) == pgpd(8.5) - pgpd(7.5)