hsstan-package | Hierarchical shrinkage Stan models for biomarker selection |
bayes_R2 | Bayesian and LOO-adjusted R-squared |
bayes_R2.hsstan | Bayesian and LOO-adjusted R-squared |
diabetes | Diabetes data with interaction terms |
hsstan | Hierarchical shrinkage models |
kfold | K-fold cross-validation |
kfold.hsstan | K-fold cross-validation |
log_lik | Pointwise log-likelihood |
log_lik.hsstan | Pointwise log-likelihood |
loo | Predictive information criteria for Bayesian models |
loo.hsstan | Predictive information criteria for Bayesian models |
loo_R2 | Bayesian and LOO-adjusted R-squared |
loo_R2.hsstan | Bayesian and LOO-adjusted R-squared |
nsamples | Number of posterior samples |
nsamples.hsstan | Number of posterior samples |
plot.projsel | Plot of relative explanatory power of predictors |
posterior_interval | Posterior uncertainty intervals |
posterior_interval.hsstan | Posterior uncertainty intervals |
posterior_linpred | Posterior distribution of the linear predictor |
posterior_linpred.hsstan | Posterior distribution of the linear predictor |
posterior_performance | Posterior measures of performance |
posterior_predict | Posterior predictive distribution |
posterior_predict.hsstan | Posterior predictive distribution |
posterior_summary | Posterior summary |
posterior_summary.default | Posterior summary |
posterior_summary.hsstan | Posterior summary |
print.hsstan | Print a summary for the fitted model |
projsel | Forward selection minimizing KL-divergence in projection |
sampler.stats | Sampler statistics |
summary.hsstan | Summary for the fitted model |
waic | Predictive information criteria for Bayesian models |
waic.hsstan | Predictive information criteria for Bayesian models |