search.best.n.bisection {hscovar} | R Documentation |
Method of bisection for estimating optimal sample size
Description
A grid [nstart, nmax]
for possible sample size is
considered. Instead of executing a time-consuming grid search, the method
of bisection is applied to this interval. For each step, the function
pwr.normtest
is called for the given set of parameters.
Usage
search.best.n.bisection(
R,
betaSE,
lambda,
pos,
nstart,
nmax,
weights = 1,
typeII = 0.2,
alpha = 0.01
)
Arguments
R |
(p x p) matrix containing theoretical correlation between SNP pairs |
betaSE |
effect size relative to residual standard deviation |
lambda |
shrinkage parameter |
pos |
vector (LEN nqtl) of SNP indices for assumed QTL positions |
nstart |
minimum value for grid search |
nmax |
maximum value for grid search |
weights |
vector (LEN p) of SNP-specific weights or scalar if weights are equal for all SNPs; default value 1 |
typeII |
type-II error level; default value 0.2 |
alpha |
type-I error level; default value 0.01 |
Value
integer of optimal sample size
Examples
### correlation matrix (should depend on sire haplotypes)
R <- AR1(100, rho = 0.1)
### positions of putative QTL signals
pos <- c(14, 75)
### optimal sample size
search.best.n.bisection(R, 0.35, 1200, pos, 10, 5000)
[Package hscovar version 0.4.2 Index]