rstar_glm {holi} | R Documentation |
Compute r* Statistics for Generalized Linear Models
Description
The rstar_glm
function computes r* statistics for hypothesis testing
on coefficients of interest in generalized linear models (GLMs).
It supports logistic, linear, and Poisson regression models. For logistic
models, the outcome must be binary.
Usage
rstar_glm(
.formula,
.data,
.model = c("logistic", "linear", "poisson"),
.psidesc = "Coefficient of Interest",
.psival = 0,
.fpsi = 2,
.rstar.ci = FALSE,
...
)
## S3 method for class 'logistic'
rstar_glm(
.formula,
.data,
.model = c("logistic", "linear", "poisson"),
.psidesc = "Coefficient of Interest",
.psival = 0,
.fpsi = 2,
.rstar.ci = FALSE,
...
)
## S3 method for class 'linear'
rstar_glm(
.formula,
.data,
.model = c("logistic", "linear", "poisson"),
.psidesc = "Coefficient of Interest",
.psival = 0,
.fpsi = 2,
.rstar.ci = FALSE,
...
)
## S3 method for class 'poisson'
rstar_glm(
.formula,
.data,
.model = c("logistic", "linear", "poisson"),
.psidesc = "Coefficient of Interest",
.psival = 0,
.fpsi = 2,
.rstar.ci = FALSE,
...
)
## Default S3 method:
rstar_glm(
.formula,
.data,
.model = c("logistic", "linear", "poisson"),
.psidesc = "Coefficient of Interest",
.psival = 0,
.fpsi = 2,
.rstar.ci = FALSE,
...
)
Arguments
.formula |
A formula specifying the model. |
.data |
A data frame containing the variables in the model. |
.model |
The type of GLM model: "logistic", "linear", or "poisson". |
.psidesc |
A description of the parameter of interest. |
.psival |
The value of the parameter of interest under the null hypothesis. |
.fpsi |
The index of the parameter of interest. |
.rstar.ci |
Logical; if TRUE, compute confidence intervals for r*. |
... |
Additional arguments passed to the likelihoodAsy functions. |
Value
A list with the object returned from likelihoodAsy::rstar (rs
),
the object returned from likelihoodAsy::rstar.ci (rs_ci
), and the object
returned from stats::glm (fit_glm
).
References
Pierce, D. A., & Bellio, R. (2017). Modern Likelihood-Frequentist Inference. International Statistical Review / Revue Internationale de Statistique, 85(3), 519–541. doi:10.1111/insr.12232
Bellio R, Pierce D (2020). likelihoodAsy: Functions for Likelihood Asymptotics. R package version 0.51, https://CRAN.R-project.org/package=likelihoodAsy.
Examples
# Logistic model
rstar_glm(law ~ DriversKilled + VanKilled + drivers + kms,
.data = Seatbelts,
.model = "logistic") |> suppressWarnings()
# Poisson model
rstar_glm(count ~ spray,
.data = InsectSprays,
.model = "poisson") |> suppressWarnings()
# Linear model
rstar_glm(mpg ~ wt + hp,
.data = mtcars,
.model = "linear") |> suppressWarnings()