progeny {hnp} | R Documentation |
Sitophilus zeamais progeny
Description
Progeny of Sitophilus zeamais, the maize weevil, when treated with different organic extracts
Usage
data(progeny)
Format
A data frame with 40 observations on the following 2 variables.
extract | factor | levels leaf , branch , seed and control |
y | numeric | number of emerged insects after 60 days |
Details
Petri dishes containing 10g of corn were treated with extracts prepared with different parts of the plant Annona mucosa (seeds, leaves and branches) at a concentration of 1500 mg/kg or just water (control), using a completely randomized design with 10 replicates. Then 20 S. zeamais adults were placed in each Petri dish and the focus is on the numbers of emerged insects (progeny) after 60 days, see Ribeiro et al (2013).
Source
Demétrio, C. G. B., Hinde, J. and Moral, R. A. (2014) Models for overdispersed data in entomology. In Godoy, W. A. C. and Ferreira, C. P. (Eds.) Ecological modelling applied to entomology. Springer.
References
Ribeiro, L. P., Vendramin, J. D., Bicalho, K. U., Andrade, M. S., Fernandes, J. B., Moral, R. A., Demétrio, C. G. B. (2013) Annona mucosa Jacq. (Annonaceae): A promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae). J Stored Prod Res 55:6-14
Moral, R. A., Hinde, J. and Demétrio, C. G. B. (2017) Half-normal plots and overdispersed models in R: the hnp package. Journal of Statistical Software 81(10):1-23.
Examples
data(progeny)
# Poisson fit
model1 <- glm(y ~ extract, family=poisson, data=progeny)
anova(model1, test="Chisq")
# Quasi-Poisson fit
model2 <- glm(y ~ extract, family=quasipoisson, data=progeny)
summary(model2)$dispersion
anova(model2, test="F")
# half-normal plots
par(mfrow=c(1,2),cex=1.4, cex.main=0.9, pty='s')
hnp(model1, pch=4, main="(a) Poisson; log-linear",
xlab="Half-normal scores", ylab="Deviance residuals")
hnp(model2, pch=4, main="(b) Quasi-Poisson; log-linear",
xlab="Half-normal scores", ylab="Deviance residuals")
anova(model1, test="Chisq") # Poisson model
anova(model2, test="F") # quasi-Poisson model
summary(model1) # Poisson model
summary(model2) # quasi-Poisson model
# now with factor level parameterisation
summary(update(model1,.~.-1))
summary(update(model2,.~.-1))
## for discussion on the analysis of this data set,
## see Demetrio et al. (2014)