psrf {hmclearn} | R Documentation |
Calculates Potential Scale Reduction Factor (psrf), also called the Rhat statistic,
from models fit via mh
or hmc
Description
Gelman and Rubin's diagnostic assesses the mix of multiple MCMC chain with different initial parameter values Values close to 1 indicate that the posterior simulation has sufficiently converged, while values above 1 indicate that additional samples may be necessary to ensure convergence. A general guideline suggests that values less than 1.05 are good, between 1.05 and 1.10 are ok, and above 1.10 have not converged well.
Usage
psrf(object, burnin, ...)
Arguments
object |
an object of class |
burnin |
optional numeric parameter for the number of initial MCMC samples to omit from the summary |
... |
currently unused |
Value
Numeric vector of Rhat statistics for each parameter
References
Gelman, A. and Rubin, D. (1992) Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4) 457-472.
Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC.
Gabry, Jonah and Mahr, Tristan (2019). bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/
Examples
# poisson regression example
set.seed(7363)
X <- cbind(1, matrix(rnorm(40), ncol=2))
betavals <- c(0.8, -0.5, 1.1)
lmu <- X %*% betavals
y <- sapply(exp(lmu), FUN = rpois, n=1)
f <- hmc(N = 1000,
theta.init = rep(0, 3),
epsilon = 0.01,
L = 10,
logPOSTERIOR = poisson_posterior,
glogPOSTERIOR = g_poisson_posterior,
varnames = paste0("beta", 0:2),
param = list(y=y, X=X),
parallel=FALSE, chains=2)
psrf(f, burnin=100)