neff.hmclearn {hmclearn} | R Documentation |
Effective sample size calculation
Description
Calculates an estimate of the adjusted MCMC sample size per parameter adjusted for autocorrelation.
Usage
## S3 method for class 'hmclearn'
neff(object, burnin = NULL, lagmax = NULL, ...)
Arguments
object |
an object of class |
burnin |
optional numeric parameter for the number of initial MCMC samples to omit from the summary |
lagmax |
maximum lag to extract for determining effective sample sizes |
... |
currently unused |
Value
Numeric vector with effective sample sizes for each parameter in the model
References
Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC. Section 11.5
Examples
# poisson regression example
set.seed(7363)
X <- cbind(1, matrix(rnorm(40), ncol=2))
betavals <- c(0.8, -0.5, 1.1)
lmu <- X %*% betavals
y <- sapply(exp(lmu), FUN = rpois, n=1)
f <- hmc(N = 1000,
theta.init = rep(0, 3),
epsilon = c(0.03, 0.02, 0.015),
L = 10,
logPOSTERIOR = poisson_posterior,
glogPOSTERIOR = g_poisson_posterior,
varnames = paste0("beta", 0:2),
param = list(y=y, X=X),
parallel=FALSE, chains=2)
neff(f, burnin=100)
[Package hmclearn version 0.0.5 Index]