hmc {hmclearn} | R Documentation |
Fit a generic model using Hamiltonian Monte Carlo (HMC)
Description
This function runs the HMC algorithm on a generic model provided
the logPOSTERIOR
and gradient glogPOSTERIOR
functions.
All parameters specified within the list param
are passed to these two functions.
The tuning parameters epsilon
and L
are passed to the
Leapfrog algorithm.
Usage
hmc(
N = 10000,
theta.init,
epsilon = 0.01,
L = 10,
logPOSTERIOR,
glogPOSTERIOR,
randlength = FALSE,
Mdiag = NULL,
constrain = NULL,
verbose = FALSE,
varnames = NULL,
param = list(),
chains = 1,
parallel = FALSE,
...
)
Arguments
N |
Number of MCMC samples |
theta.init |
Vector of initial values for the parameters |
epsilon |
Step-size parameter for |
L |
Number of |
logPOSTERIOR |
Function to calculate and return the log posterior given a vector of values of |
glogPOSTERIOR |
Function to calculate and return the gradient of the log posterior given a vector of values of |
randlength |
Logical to determine whether to apply some randomness to the number of leapfrog steps tuning parameter |
Mdiag |
Optional vector of the diagonal of the mass matrix |
constrain |
Optional vector of which parameters in |
verbose |
Logical to determine whether to display the progress of the HMC algorithm |
varnames |
Optional vector of theta parameter names |
param |
List of additional parameters for |
chains |
Number of MCMC chains to run |
parallel |
Logical to set whether multiple MCMC chains should be run in parallel |
... |
Additional parameters for |
Value
Object of class hmclearn
Elements for hmclearn
objects
N
-
Number of MCMC samples
theta
-
Nested list of length
N
of the sampled values oftheta
for each chain thetaCombined
-
List of dataframes containing sampled values, one for each chain
r
-
List of length
N
of the sampled momenta theta.all
-
Nested list of all parameter values of
theta
sampled prior to accept/reject step for each r.all
-
List of all values of the momenta
r
sampled prior to accept/reject accept
-
Number of accepted proposals. The ratio
accept
/N
is the acceptance rate accept_v
-
Vector of length
N
indicating which samples were accepted M
-
Mass matrix used in the HMC algorithm
algorithm
-
HMC
for Hamiltonian Monte Carlo varnames
-
Optional vector of parameter names
chains
-
Number of MCMC chains
Available logPOSTERIOR
and glogPOSTERIOR
functions
linear_posterior
-
Linear regression: log posterior
g_linear_posterior
-
Linear regression: gradient of the log posterior
logistic_posterior
-
Logistic regression: log posterior
g_logistic_posterior
-
Logistic regression: gradient of the log posterior
poisson_posterior
-
Poisson (count) regression: log posterior
g_poisson_posterior
-
Poisson (count) regression: gradient of the log posterior
lmm_posterior
-
Linear mixed effects model: log posterior
g_lmm_posterior
-
Linear mixed effects model: gradient of the log posterior
glmm_bin_posterior
-
Logistic mixed effects model: log posterior
g_glmm_bin_posterior
-
Logistic mixed effects model: gradient of the log posterior
glmm_poisson_posterior
-
Poisson mixed effects model: log posterior
g_glmm_poisson_posterior
-
Poisson mixed effects model: gradient of the log posterior
Author(s)
Samuel Thomas samthoma@iu.edu, Wanzhu Tu wtu@iu.edu
References
Neal, Radford. 2011. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, 116–62. Chapman; Hall/CRC.
Betancourt, Michael. 2017. A Conceptual Introduction to Hamiltonian Monte Carlo.
Thomas, S., Tu, W. 2020. Learning Hamiltonian Monte Carlo in R.
Examples
# Linear regression example
set.seed(521)
X <- cbind(1, matrix(rnorm(300), ncol=3))
betavals <- c(0.5, -1, 2, -3)
y <- X%*%betavals + rnorm(100, sd=.2)
fm1_hmc <- hmc(N = 500,
theta.init = c(rep(0, 4), 1),
epsilon = 0.01,
L = 10,
logPOSTERIOR = linear_posterior,
glogPOSTERIOR = g_linear_posterior,
varnames = c(paste0("beta", 0:3), "log_sigma_sq"),
param=list(y=y, X=X), parallel=FALSE, chains=1)
summary(fm1_hmc, burnin=100)
# poisson regression example
set.seed(7363)
X <- cbind(1, matrix(rnorm(40), ncol=2))
betavals <- c(0.8, -0.5, 1.1)
lmu <- X %*% betavals
y <- sapply(exp(lmu), FUN = rpois, n=1)
fm2_hmc <- hmc(N = 500,
theta.init = rep(0, 3),
epsilon = 0.01,
L = 10,
logPOSTERIOR = poisson_posterior,
glogPOSTERIOR = g_poisson_posterior,
varnames = paste0("beta", 0:2),
param = list(y=y, X=X),
parallel=FALSE, chains=1)
summary(fm2_hmc, burnin=100)