mcmc.fun {hkevp} | R Documentation |
Point estimates of HKEVP fit
Description
Application of a function to the main Markov chains resulting from the procedure hkevp.fit
. May be used to obtain point estimates of the posterior distribution (e.g., the mean or the median). See details.
Usage
mcmc.fun(fit, FUN, ...)
Arguments
fit |
A named list.
Output from the |
FUN |
The function applied to the Markov chains in |
... |
Optional arguments of the function to be applied on the Markov chains (e.g. |
Details
A function is applied to the main Markov chains resulting from the MCMC procedures hkevp.fit
or latent.fit
. These chains correspond to the three GEV parameters, the dependence parameter and the bandwidth
.
The value returned by FUN
must be a single value.
Value
If fitted model is the HKEVP, a named list with three elements:
-
GEV
: A numerical matrix. Result of the functionFUN
for each GEV parameter (columns) and each site position (rows). -
alpha
: A numerical value. Result of the functionFUN
on the Markov chain associated to the dependence parameter.
-
tau
: A numerical value. Result of the functionFUN
on the Markov chain associated to the bandwidth parameter.
If fitted model is the latent variable model, the functions returns the GEV
matrix only.
Author(s)
Quentin Sebille
Examples
# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
knots <- sites
loc <- sites[,1]*10
scale <- 3
shape <- .2
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, knots, loc, scale, shape, alpha, tau)
# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)
# Posterior median and standard deviation:
# mcmc.fun(fit, median)
# mcmc.fun(fit, sd)