mcmc.fun {hkevp} | R Documentation |
Point estimates of HKEVP fit
Description
Application of a function to the main Markov chains resulting from the procedure hkevp.fit
. May be used to obtain point estimates of the posterior distribution (e.g., the mean or the median). See details.
Usage
mcmc.fun(fit, FUN, ...)
Arguments
fit |
A named list.
Output from the |
FUN |
The function applied to the Markov chains in |
... |
Optional arguments of the function to be applied on the Markov chains (e.g. |
Details
A function is applied to the main Markov chains resulting from the MCMC procedures hkevp.fit
or latent.fit
. These chains correspond to the three GEV parameters, the dependence parameter \alpha
and the bandwidth \tau
.
The value returned by FUN
must be a single value.
Value
If fitted model is the HKEVP, a named list with three elements:
-
GEV
: A numerical matrix. Result of the functionFUN
for each GEV parameter (columns) and each site position (rows). -
alpha
: A numerical value. Result of the functionFUN
on the Markov chain associated to the dependence parameter\alpha
. -
tau
: A numerical value. Result of the functionFUN
on the Markov chain associated to the bandwidth parameter\tau
.
If fitted model is the latent variable model, the functions returns the GEV
matrix only.
Author(s)
Quentin Sebille
Examples
# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
knots <- sites
loc <- sites[,1]*10
scale <- 3
shape <- .2
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, knots, loc, scale, shape, alpha, tau)
# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)
# Posterior median and standard deviation:
# mcmc.fun(fit, median)
# mcmc.fun(fit, sd)