extrapol.gev {hkevp} | R Documentation |
Spatial extrapolation of GEV parameters with the HKEVP
Description
Predictive distributions of the GEV parameters at a set of ungauged sites (targets), given the output from the MCMC procedures hkevp.fit
or latent.fit
. See details.
Usage
extrapol.gev(fit, targets, targets.covariates)
Arguments
fit |
Output from the |
targets |
A matrix of real values giving the spatial coordinates of the ungauged positions. Each row corresponds to an ungauged position. |
targets.covariates |
A matrix of real values giving the spatial covariates of the ungauged positions. Must match with the covariates used in |
Details
Since the GEV parameters are modelled with latent Gaussian processes, spatial extrapolation of the marginal distributions at target positions (s^*_1, ..., s^*_k)
is performed with simple kriging. Estimation is done at each MCMC step to produce a sample of the predictive distribution.
Value
A named list of three elements: loc
, scale
, shape
. Each one is a matrix with columns corresponding to targets positions.
Author(s)
Quentin Sebille
See Also
Examples
# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
loc <- sites[,1]*10
scale <- 3
shape <- 0
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, sites, loc, scale, shape, alpha, tau)
# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)
## Extrapolation:
targets <- matrix(1.5, 1, 2)
gev.targets <- extrapol.gev(fit, targets)
## True vs predicted:
predicted <- sapply(gev.targets, median)
sd.predict <- sapply(gev.targets, sd)
true <- c(targets[,1]*10, scale, shape)
# cbind(true, predicted, sd.predict)