knChooseReMeDI {highfrequency} | R Documentation |
ReMeDI tuning parameter
Description
Function to choose the tuning parameter, kn in ReMeDI estimation.
The optimal parameter kn
is the smallest value that where the criterion:
SqErr(k_{n})^{n}_{t} = \left(\hat{R}^{n,k_{n}}_{t,0} - \hat{R}^{n,k_{n}}_{t,1} - \hat{R}^{n,k_{n}}_{t,2} + \hat{R}^{n,k_{n}}_{t,3} - \hat{R}^{n, k_{n}}_{t,l}\right)^{2}
is perceived to be zero. The tuning parameter tol
can be set to choose the tolerance of the perception of 'close to zero', a higher tolerance will lead to a higher optimal value.
Usage
knChooseReMeDI(
pData,
knMax = 10,
tol = 0.05,
size = 3,
lower = 2,
upper = 5,
plot = FALSE
)
Arguments
pData |
|
knMax |
max value of |
tol |
tolerance for the minimizing value. If |
size |
size of the local window. |
lower |
lower boundary for the method if it fails to find an optimal value. If this is the case, the best kn between lower and upper is returned |
upper |
upper boundary for the method if it fails to find an optimal value. If this is the case, the best kn between lower and upper is returned |
plot |
logical whether to plot the errors. |
Details
This is the algorithm B.2 in the appendix of the Li and Linton (2019) working paper.
Value
integer containing the optimal kn
Note
We Thank Merrick Li for contributing his Matlab code for this estimator.
Author(s)
Emil Sjoerup.
References
Li, M. and Linton, O. (2019). A ReMeDI for microstructure noise. Cambridge Working Papers in Economics 1908.
Examples
optimalKn <- knChooseReMeDI(sampleTData[as.Date(DT) == "2018-01-02",],
knMax = 10, tol = 0.05, size = 3,
lower = 2, upper = 5, plot = TRUE)
optimalKn
## Not run:
# We can also have a much larger search-space
optimalKn <- knChooseReMeDI(sampleTDataEurope,
knMax = 50, tol = 0.05,
size = 3, lower = 2, upper = 5, plot = TRUE)
optimalKn
## End(Not run)