ReMeDIAsymptoticVariance {highfrequency} | R Documentation |
Asymptotic variance of ReMeDI estimator
Description
Estimates the asymptotic variance of the ReMeDI estimator.
Usage
ReMeDIAsymptoticVariance(pData, kn, lags, phi, i)
Arguments
pData |
xts or data.table containing the log-prices of the asset
|
kn |
numerical value determining the tuning parameter kn this controls the lengths of the non-overlapping interval in the ReMeDI estimation
|
lags |
numeric containing integer values indicating the lags for which to estimate the (co)variance
|
phi |
tuning parameter phi
|
i |
tuning parameter i
|
Details
Some notation is needed for the estimator of the asymptotic covariance of the ReMeDI estimator.
Let
δ(n,i)=tin−tt−1n,i≥1,
δ^tn=((ti+knn−tin)∨ϕnknδ(n,i+1+kn)−ti+2+2knn+ti+2+knn)2,
U(1)tn=∑i=0nt−ω(1)nδ^in,
U(2,j)tn=∑i=0nt−ω(2)nδ^inΔj(Y)i+ω(2)2nn,
U(3,j,j′)tn=∑i=0nt−ω(3)nδ^inΔj(Y)i+ω(3)2nnΔj′(Y)i+ω(3)3nn,
U(4;j,j′)tn=−∑i=2q−1knnt−ω(4)nΔj(Y)Δj′(Y)i+ω(3)3nn,
U(5,k;j,j′)tn=∑Qq∈Qq∑i=2e(Qq)knnt−ω(5)nΔjQq⊕(j′Qq′(+k))(Y)in∏ℓ:lℓ∈QqcΔ(jlℓ,j′lℓ+k)(Y)i+ω(5)ℓ+1n′,
U(6,k;j,j′)=∑jl∈j,jl′′∈j′∑i=2knnt−ω(6)nΔ(jl,jl′′+k)(Y)inΔj−l(Y)i+ω(6)2nnΔj−l′′(Y)i+ω(6)3nn−∑jl∈j∑i=2qknnt−ω′(6)nΔ{jl}⊕j′(+k)(Y)inΔj−l(Y)i+ω′(6)2nn−∑jl′∈j′′∑i=2qknnt−ω′′(6)nΔ{jl′′+k}⊕j(Y)inΔj−l′′(Y)i+ω′′(6)2n′n,
U(7,k;j,j′)tn=ReMeDI(j⊕j′(+k))tn,
U(k;j,j′)tn=∑ℓ=57U(ℓ,k;j,j′)tn,
U(k;j,j′)tn=∑ℓ=57U(ℓ,k;j,j′)tn,
Where the indices are given by:
ω(1)n=2+2kn, ω(2)2n=2+(3+2q−1)kn, ω(2)n=ω(2)2n+j1+kn,
ω(3)2n=2+(3+2q−1)kn, ω(3)3n=2+(5+2q−1+2q′−1)kn+j1,
ω(3)n=ω(3)3n+j1′+kn, ω(4)2n=2kn+qn′+j1, ω(4)n=ω(4)2n+j1′+kn,
e(Qq)=(2∣Qq∣+q′−q−1)∨1, ω(5)ℓ+1n=4ℓkn+∑ℓ′=1ℓjlℓ′∨(jlℓ′+k)forℓ≥1,
ω(5)n=ω(5)∣Qqc∣+1n+jl∣Qqc∣∨(jl∣Qqc∣+k)+kn,
ω(6)2n=(2q−2+2)kn+jℓ∨(jℓ′′+k), ω(6)3n=(2q−2+2q′−2+2)kn+j1+jℓ∨(jℓ′+k),
ω′(6)2n=(2q−2+2)kn+jℓ∨(j1′+k), ω′′(6)2n=(2q′−2+1)kn+(jℓ′′+k)∨j1,
ω(6)n=ω(6)3n+j′+kn, ω′(6)n=ω′(6)2n+j1+kn, ω′′(6)n=ω′′(6)2nj1′+kn,
The asymptotic variance estimator is then given by
σ^(j,j′)tn=nt1∑ℓ=13σ^ℓ(j,j′)tn,
where
σ^1(j,j′)tn=U(0;j,j′)+∑k=1in(U(k;j,j′)tn)+(2in+1)U(4;j,j)tn,
σ^2(j,j′)tn=U(3;j,j′),
σ^3(j,j′)tn=nt21ReMeDI(Y,j)tnReMeDI(Y,j′)tnU(1)tn,
−nt1(ReMeDI(Y,j)tnU(2,j′)tn+ReMeDI(Y,j′)tnU(2,j)tn),
Value
a list with components ReMeDI
and asympVar
containing the ReMeDI estimation and it's asymptotic variance respectively
Note
We Thank Merrick Li for contributing his Matlab code for this estimator.
Examples
kn <- knChooseReMeDI(sampleTDataEurope[, list(DT, PRICE)])
remedi <- ReMeDI(sampleTDataEurope[, list(DT, PRICE)], kn = kn, lags = 0:15)
asympVar <- ReMeDIAsymptoticVariance(sampleTDataEurope[, list(DT, PRICE)],
kn = kn, lags = 0:15, phi = 0.9, i = 2)
[Package
highfrequency version 1.0.1
Index]