ReMeDIAsymptoticVariance {highfrequency}R Documentation

Asymptotic variance of ReMeDI estimator

Description

Estimates the asymptotic variance of the ReMeDI estimator.

Usage

ReMeDIAsymptoticVariance(pData, kn, lags, phi, i)

Arguments

pData

xts or data.table containing the log-prices of the asset

kn

numerical value determining the tuning parameter kn this controls the lengths of the non-overlapping interval in the ReMeDI estimation

lags

numeric containing integer values indicating the lags for which to estimate the (co)variance

phi

tuning parameter phi

i

tuning parameter i

Details

Some notation is needed for the estimator of the asymptotic covariance of the ReMeDI estimator. Let

δ(n,i)=tintt1n,i1, \delta\left(n, i\right) = t_{i}^{n}-t_{t-1}^{n}, i\geq 1,

δ^tn=(knδ(n,i+1+kn)ti+2+2knn+ti+2+knn(ti+knntin)ϕn)2, \hat{\delta}_{t}^{n}=\left(\frac{k_{n}\delta\left(n,i+1+k_{n}\right)-t_{i+2+2k_{n}}^{n}+t_{i+2+k_{n}}^{n}}{\left(t_{i+k_{n}}^{n}-t_{i}^{n}\right)\vee\phi_{n}}\right)^{2},

U(1)tn=i=0ntω(1)nδ^in, U\left(1\right)_{t}^{n}=\sum_{i=0}^{n_{t}-\omega\left(1\right)_{n}}\hat{\delta}_{i}^{n},

U(2,j)tn=i=0ntω(2)nδ^inΔj(Y)i+ω(2)2nn, U\left(2,\boldsymbol{j}\right)_{t}^{n}=\sum_{i=0}^{n_{t}-\omega\left(2\right)_{n}}\hat{\delta}_{i}^{n}\Delta_{\boldsymbol{j}}\left(Y\right)_{i+\omega\left(2\right)_{2}^{n}}^{n},

U(3,j,j)tn=i=0ntω(3)nδ^inΔj(Y)i+ω(3)2nnΔj(Y)i+ω(3)3nn, U\left(3,\boldsymbol{j},\boldsymbol{j}'\right)_{t}^{n}=\sum_{i=0}^{n_{t}-\omega\left(3\right)_{n}}\hat{\delta}_{i}^{n}\Delta_{\boldsymbol{j}}\left(Y\right)_{i+\omega\left(3\right)_{2}^{n}}^{n}\Delta_{\boldsymbol{j}'}\left(Y\right)_{i+\omega\left(3\right)_{3}^{n}}^{n},

U(4;j,j)tn=i=2q1knntω(4)nΔj(Y)Δj(Y)i+ω(3)3nn, U\left(4;\boldsymbol{j},\boldsymbol{j}'\right)_{t}^{n}=-\sum_{i=2^{q-1}k_{n}}^{n_{t}-\omega\left(4\right)_{n}}\Delta_{\boldsymbol{j}}\left(Y\right)\Delta_{\boldsymbol{j}^{\prime}}\left(Y\right)_{i+\omega\left(3\right)_{3}^{n}}^{n},

U(5,k;j,j)tn=QqQqi=2e(Qq)knntω(5)nΔjQq(jQq(+k))(Y)in:lQqcΔ(jl,jl+k)(Y)i+ω(5)+1n, U\left(5,k;\boldsymbol{j},\boldsymbol{j}'\right)_{t}^{n}=\sum_{Q_{q}\in\mathcal{Q}_{q}}\sum_{i=2^{e\left(Q_{q}\right)}k_{n}}^{n_{t}-\omega\left(5\right)_{n}}\Delta_{\boldsymbol{j}_{Q_{q}\oplus\left(\boldsymbol{j}\prime_{Q_{q'}}\left(+k\right)\right)}}\left(Y\right)_{i}^{n}\prod_{\ell:l_{\ell}\in Q_{q}^{c}}\Delta_{\left(j_{l_{\ell}},j\prime_{l_{\ell}}+k\right)\left(Y\right)_{i+\omega\left(5\right)_{\ell+1}^{n}\prime}},

U(6,k;j,j)=jlj,jlji=2knntω(6)nΔ(jl,jl+k)(Y)inΔjl(Y)i+ω(6)2nnΔjl(Y)i+ω(6)3nnjlji=2qknntω(6)nΔ{jl}j(+k)(Y)inΔjl(Y)i+ω(6)2nnjlji=2qknntω(6)nΔ{jl+k}j(Y)inΔjl(Y)i+ω(6)2nn, U\left(6,k;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)=\sum_{j_{l}\in\boldsymbol{j},j_{l^{\prime}}^{\prime}\in\boldsymbol{j}^{\prime}}\sum_{i=2k_{n}}^{n_{t}-\omega\left(6\right)n}\Delta_{\left(j_{l},j_{l^{\prime}}^{\prime}+k\right)}\left(Y\right)_{i}^{n}\Delta_{\boldsymbol{j}_{-l}}\left(Y\right)_{i+\omega\left(6\right)_{2}^{n}}^{n}\Delta_{\boldsymbol{j}_{-l^{\prime}}^{\prime}}\left(Y\right)_{i+\omega\left(6\right)_{3}^{n}}^{n} \\ -\sum_{j_{l}\in\boldsymbol{j}}\sum_{i=2^{q}k_{n}}^{n_{t}-\omega^{\prime}\left(6\right)_{n}}\Delta_{\left\{ j_{l}\right\} \oplus\boldsymbol{j}^{\prime}\left(+k\right)}\left(Y\right)_{i}^{n}\Delta_{\boldsymbol{j}-l}\left(Y\right)_{i+\omega^{\prime}\left(6\right)_{2}^{n}}^{n} \\ -\sum_{j_{l^{\prime}\in\boldsymbol{j}^{\prime}}^{\prime}}\sum_{i=2^{q}k_{n}}^{n_{t}-\omega^{\prime\prime}\left(6\right)n}\Delta_{\left\{ j_{l^{\prime}}^{\prime}+k\right\} \oplus\boldsymbol{j}}\left(Y\right)_{i}^{n}\Delta_{\boldsymbol{j}_{-l^{\prime}}^{\prime}}\left(Y\right)_{i+\omega^{\prime\prime}\left(6\right)_{2}^{n}\prime}^{n},

U(7,k;j,j)tn=ReMeDI(jj(+k))tn, U\left(7,k;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}=ReMeDI\left(\boldsymbol{j}\oplus\boldsymbol{j}^{\prime}\left(+k\right)\right)_{t}^{n},

U(k;j,j)tn==57U(,k;j,j)tn, U\left(k;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}=\sum_{\ell=5}^{7}U\left(\ell,k;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n},

U(k;j,j)tn==57U(,k;j,j)tn, U\left(k;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}=\sum_{\ell=5}^{7}U\left(\ell,k;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n},

Where the indices are given by:

ω(1)n=2+2kn, ω(2)2n=2+(3+2q1)kn, ω(2)n=ω(2)2n+j1+kn, \omega\left(1\right)_{n}=2+2k_{n},\ \omega\left(2\right)_{2}^{n}=2+\left(3+2^{q-1}\right)k_{n},\ \omega\left(2\right)_{n}=\omega\left(2\right)_{2}^{n}+j_{1}+k_{n},

ω(3)2n=2+(3+2q1)kn, ω(3)3n=2+(5+2q1+2q1)kn+j1, \omega\left(3\right)_{2}^{n}=2+\left(3+2^{q-1}\right)k_{n},\ \omega\left(3\right)_{3}^{n}=2+\left(5+2^{q-1}+2^{q^{\prime}-1}\right)k_{n}+j_{1},

ω(3)n=ω(3)3n+j1+kn, ω(4)2n=2kn+qn+j1, ω(4)n=ω(4)2n+j1+kn, \omega\left(3\right)_{n}=\omega\left(3\right)_{3}^{n}+j_{1}^{\prime}+k_{n},\ \omega\left(4\right)_{2}^{n}=2k_{n}+q_{n}^{\prime}+j_{1},\ \omega\left(4\right)_{n}=\omega\left(4\right)_{2}^{n}+j_{1}^{\prime}+k_{n},

e(Qq)=(2Qq+qq1)1, ω(5)+1n=4kn+=1jl(jl+k)for1, e\left(Q_{q}\right)=\left(2\left|Q_{q}\right|+q^{\prime}-q-1\right)\vee1,\ \omega\left(5\right)_{\ell+1}^{n}=4\ell k_{n}+\sum_{\ell^{\prime}=1}^{\ell}j_{l_{\ell^{\prime}}}\vee\left(j_{l_{\ell}}^{\prime}+k\right)\textrm{for}\ell\geq 1,

ω(5)n=ω(5)Qqc+1n+jlQqc(jlQqc+k)+kn, \omega\left(5\right)_{n}=\omega\left(5\right)_{\left|Q_{q}^{c}\right|+1}^{n}+j_{l_{\left|Q_{q}^{c}\right|}}\vee\left(j_{l_{\left|Q_{q}^{c}\right|}}+k\right)+k_{n},

ω(6)2n=(2q2+2)kn+j(j+k), ω(6)3n=(2q2+2q2+2)kn+j1+j(j+k), \omega\left(6\right)_{2}^{n}=\left(2^{q-2}+2\right)k_{n}+j_{\ell}\vee\left(j_{\ell^{\prime}}^{\prime}+k\right),\ \omega\left(6\right)_{3}^{n}=\left(2^{q-2}+2^{q^{\prime}-2}+2\right)k_{n}+j_{1}+j_{\ell}\vee\left(j_{\ell}^{\prime}+k\right),

ω(6)2n=(2q2+2)kn+j(j1+k), ω(6)2n=(2q2+1)kn+(j+k)j1, \omega^{\prime}\left(6\right)_{2}^{n}=\left(2^{q-2}+2\right)k_{n}+j_{\ell}\vee\left(j_{1}^{\prime}+k\right),\ \omega^{\prime\prime}\left(6\right)_{2}^{n}=\left(2^{q^{\prime}-2}+1\right)k_{n}+\left(j_{\ell^{\prime}}^{\prime}+k\right)\vee j_{1},

ω(6)n=ω(6)3n+j+kn, ω(6)n=ω(6)2n+j1+kn, ω(6)n=ω(6)2nj1+kn, \omega\left(6\right)_{n}=\omega\left(6\right)_{3}^{n}+j^{\prime}+k_{n},\ \omega^{\prime}\left(6\right)_{n}=\omega^{\prime}\left(6\right)_{2}^{n}+j_{1}+k_{n},\ \omega^{\prime\prime}\left(6\right)_{n}=\omega^{\prime\prime}\left(6\right)_{2}^{n}j_{1}^{\prime}+k_{n},

The asymptotic variance estimator is then given by

σ^(j,j)tn=1nt=13σ^(j,j)tn, \hat{\sigma}\left(\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}=\frac{1}{n_{t}}\sum_{\ell=1}^{3}\hat{\sigma}_{\ell}\left(\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n},

where

σ^1(j,j)tn=U(0;j,j)+k=1in(U(k;j,j)tn)+(2in+1)U(4;j,j)tn, \hat{\sigma}_{1}\left(\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}=U\left(0;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)+\sum_{k=1}^{i_{n}}\left(U\left(k;\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}\right)+\left(2i_{n}+1\right)U\left(4;\boldsymbol{j},\boldsymbol{j}\right)_{t}^{n},

σ^2(j,j)tn=U(3;j,j), \hat{\sigma}_{2}\left(\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}=U\left(3;\boldsymbol{j},\boldsymbol{j}^{\prime}\right),

σ^3(j,j)tn=1nt2ReMeDI(Y,j)tnReMeDI(Y,j)tnU(1)tn, \hat{\sigma}_{3}\left(\boldsymbol{j},\boldsymbol{j}^{\prime}\right)_{t}^{n}=\frac{1}{n_{t}^{2}}\textrm{ReMeDI}\left(Y,\boldsymbol{j}\right)_{t}^{n}\textrm{ReMeDI}\left(Y,\boldsymbol{j}^{\prime}\right)_{t}^{n}U\left(1\right)_{t}^{n}\\,

1nt(ReMeDI(Y,j)tnU(2,j)tn+ReMeDI(Y,j)tnU(2,j)tn), -\frac{1}{n_{t}}\left(\textrm{ReMeDI}\left(Y,\boldsymbol{j}\right)_{t}^{n}U\left(2,\boldsymbol{j}^{\prime}\right)_{t}^{n}+\textrm{ReMeDI}\left(Y,\boldsymbol{j}^{\prime}\right)_{t}^{n}U\left(2,\boldsymbol{j}\right)_{t}^{n}\right),

Value

a list with components ReMeDI and asympVar containing the ReMeDI estimation and it's asymptotic variance respectively

Note

We Thank Merrick Li for contributing his Matlab code for this estimator.

Examples



kn <- knChooseReMeDI(sampleTDataEurope[, list(DT, PRICE)])

remedi <- ReMeDI(sampleTDataEurope[, list(DT, PRICE)], kn = kn, lags = 0:15)

asympVar <- ReMeDIAsymptoticVariance(sampleTDataEurope[, list(DT, PRICE)], 
                                     kn = kn, lags = 0:15, phi = 0.9, i = 2)


[Package highfrequency version 1.0.1 Index]