eval_portfolio_moments {highOrderPortfolios} | R Documentation |
Evaluate first four moments of a given portfolio
Description
Evaluate first four moments of a given portfolio's return, namely, mean, variance, skewness, and kurtosis.
Usage
eval_portfolio_moments(w, X_statistics)
Arguments
w |
Numerical vector with portfolio weights. |
X_statistics |
Argument characterizing the constituents assets.
Either the sample parameters as obtained by function |
Value
Four moments of the given portfolio.
Author(s)
Rui Zhou, Xiwen Wang, and Daniel P. Palomar
References
R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in IEEE Transactions on Signal Processing, vol. 69, pp. 892-904, 2021. <doi:10.1109/TSP.2021.3051369>.
X. Wang, R. Zhou, J. Ying, and D. P. Palomar, "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution," Available in arXiv, 2022. <https://arxiv.org/pdf/2206.02412v1.pdf>.
Examples
library(highOrderPortfolios)
data(X50)
# nonparametric case
X_moments <- estimate_sample_moments(X50[, 1:10])
w_moments <- eval_portfolio_moments(w = rep(1/10, 10), X_statistics = X_moments)
# parametric case (based on the multivariate skew t distribution)
X_skew_t_params <- estimate_skew_t(X50[, 1:10])
w_moments <- eval_portfolio_moments(w = rep(1/10, 10), X_statistics = X_skew_t_params)