estimate_sample_moments {highOrderPortfolios} | R Documentation |
Estimate first four moment parameters of multivariate observations
Description
Estimate first four moments of multivariate observations, namely, mean vector, covariance matrix, coskewness matrix, and cokurtosis matrix.
Usage
estimate_sample_moments(X, adjust_magnitude = FALSE)
Arguments
X |
Data matrix. |
adjust_magnitude |
Boolean indicating whether to adjust the order of magnitude of parameters.
Note: this is specially designed for the function |
Value
A list containing the following elements:
mu |
Mean vector. |
Sgm |
Covariance matrix. |
Phi_mat |
Co-skewness matrix. |
Psi_mat |
Co-kurtosis matrix. |
Phi |
Co-skewness matrix in vector form (collecting only the unique elements). |
Psi |
Co-kurtosis matrix in vector form (collecting only the unique elements). |
Phi_shred |
Partition on |
Psi_shred |
Partition on |
Author(s)
Rui Zhou and Daniel P. Palomar
References
R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in IEEE Transactions on Signal Processing, vol. 69, pp. 892-904, 2021. <doi:10.1109/TSP.2021.3051369>.
Examples
library(highOrderPortfolios)
data(X50)
X_moments <- estimate_sample_moments(X50[, 1:10])