betas {hierfstat} | R Documentation |
Estimates \beta
s per population and a bootstrap confidence interval
Description
Estimate populations (Population specific FST) or individual coancestries and a bootstrap confidence interval, assuming random mating
Usage
betas(dat,nboot=0,lim=c(0.025,0.975),diploid=TRUE,betaijT=FALSE)
## S3 method for class 'betas'
print(x, digits = 4, ...)
Arguments
dat |
data frame with genetic data and pop identifier |
nboot |
number of bootstrap samples. |
lim |
width of the bootstrap confidence interval |
diploid |
whether the data comes from a diploid organism |
betaijT |
whether to estimate individual coancestries |
x |
a betas object |
digits |
number of digits to print |
... |
further arguments to pass to print |
Details
If betaijT=TRUE, and the first column contains a unique identifier for each individual, the function returns the matrix of individual coancestries/kinships. Individual inbreeding coefficients can be obtained by multiplying by 2 the diagonal and substracting 1.
Value
Hi Within population gene diversities (complement to 1 of matching probabilities)
Hb Between populations gene diversities
betaiovl Average \hat{\beta_{WT}^i}
over loci (Population specific FSTs), Table 3 of
Weir and Goudet, 2017 (Genetics)
betaW Average of the betaiovl \hat{\beta_{WT}}
over loci (overall population FST)
ci The bootstrap confidence interval of population specific FSTs (only if more than 100 bootstraps requested AND if more than 10 loci are present)
if betaijT=TRUE, return the matrix of pairwise kinships only.
Methods (by generic)
-
print
: print function for betas class
Author(s)
Jerome Goudet jerome.goudet@unil.ch
References
Weir and Goudet, 2017 (Genetics) A unified characterization of population structure and relatedness.
See Also
fs.dosage
, beta.dosage
for Fst estimates (not assuming Random Mating)
and kinship estimates from dosage data, respectively
Examples
## Not run:
#3 different population sizes lead to 3 different betais
dat<-sim.genot(size=40,N=c(50,200,1000),nbloc=50,nbal=10)
betas(dat,nboot=100)
#individual coancestries from the smallest population are large
ind.coan<-betas(cbind(1:120,dat[,-1]),betaij=T)
diag(ind.coan$betaij)<-NA
graphics::image(1:120,1:120,ind.coan$betaij,xlab="Inds",ylab="Inds")
## End(Not run)